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Abstract
Ocean warming is increasing the incidence, scale, and severity of global-scale coral bleaching and
mortality, culminating in the third global coral bleaching event that occurred during record marine
heatwaves of 2014-2017. While local effects of these events have been widely reported, the global
implications remain unknown. Analysis of 15,066 reef surveys during 2014-2017 revealed that 80% of
surveyed reefs experienced signi�cant coral bleaching and 35% experienced signi�cant coral mortality.
The global extent of signi�cant coral bleaching and mortality was assessed by extrapolating results from
reef surveys using comprehensive remote-sensing data of regional heat stress. This model predicted that
51% of the world’s coral reefs suffered signi�cant bleaching and 15% signi�cant mortality, surpassing
damage from any prior global bleaching event. These observations demonstrate that global warming’s
widespread damage to coral reefs is accelerating and underscores the threat anthropogenic climate
change poses for the irreversible transformation of these essential ecosystems.

Full Text
The dramatic increase in marine heatwaves has exposed coral reef ecosystems to more frequent, more
intense, and longer-lasting heat stress [1-4]. These are predicted to accelerate in the future [5-7], making
anthropogenic climate change the foremost threat to coral reefs globally [1, 2, 5, 8-10]. Strong marine
heatwaves cause mass-bleaching of corals, which occurs when the relationship between corals and their
photosynthetic symbionts breaks down[11]. Bleached corals are physiologically damaged, nutritionally
compromised, and can die if the bleaching is severe or prolonged. During what were then the four
warmest years on record, [12-14], reefs around the world experienced the third global-scale coral
bleaching event (GCBE3) [15, 16] that lasted from June 2014 to May 2017 (hereafter referred to as 2014-
17). This was the most severe global heat stress event recorded on coral reef ecosystems [1, 3, 15], even
stronger than the two prior global bleaching events recorded in 1998 [17] and 2010 [2, 18]. Moreover, this
was the �rst time that a global bleaching event lasted longer than a single year [1, 3, 15] – this one
spanning three years with bleaching at some locations continuing after the global event concluded [19-
21]. Numerous studies have revealed how GCBE3 has impacted coral reefs locally at sites around the
globe, including several showing the most severe impacts on record in many locations (see [22] and
references therein). This paper provides the �rst global-scale analysis of the heat stress affecting coral
reefs during 2014-17 and the resultant bleaching and mortality observed. We derive statistical
relationships between global-scale, remotely-sensed heat stress and onsite surveys of coral bleaching
and mortality and use these to estimate the impact of GCBE3, accounting for regional and inter-annual
differences in bleaching and mortality responses.

Three Years of Heat Stress on Reefs

Satellite remote sensing was used to identify cumulative heat stress on coral reefs, using the Degree
Heating Week (DHW) product from the National Oceanic and Atmospheric Administration’s Coral Reef
Watch (CRW). During 2014-17, 65.9% of ~5x5 km satellite remote-sensing pixels containing coral reefs
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experienced heat stress classi�ed as su�cient to cause signi�cant coral bleaching (Alert Level 1, DHW ≥
4 °C-weeks) (Fig. 1, Extended Data Fig. 1a, Extended Data Table 1 [23, 24]). A further 23.7% of reef-
containing pixels were subjected to heat stress classi�ed as su�cient to cause severe bleaching and
signi�cant mortality (Alert Level 2, DHW ≥ 8 °C-weeks). 47.3% of reef-containing pixels that reached DHW
≥ 4 °C-weeks and 20.9% of reef-containing pixels that reached DHW ≥ 8 °C-weeks did so at least twice
during 2014-17 (Extended Data Table 1). Almost 1% of reef-containing pixels reached record levels of
heat stress at 16-30 °C-weeks – designated here as a new heat stress threshold, where coral bleaching is
likely to cause severe, widespread mortality (Alert Level 3, DHW ≥ 16 °C-weeks; Extended Data Table 1).
Repeated heat stress exposure was widespread during GCBE3. 15.2% of those reaching Alert Level 3 did
so in at least two years.

Bleaching and Mortality

In response to the widespread and severe heat stress, we assembled coral bleaching and mortality data
from 15,066 in-water and aerial surveys from teams around the globe – totaling more observations than
those found in the entire existing global bleaching database from the 1960s through 2010 [25, 26]
(Extended Data Table 2, Extended Data Fig. 1b). During GCBE3, 80% of surveys reported a signi�cant
level of bleaching (affecting >10% of corals) while 31% reported severe (>50%) bleaching. Additionally,
35% reported signi�cant (>10%) recent coral mortality, 6% of which was severe (>50%). Only 15% of
surveys reported no signi�cant bleaching or mortality.

Our global analyses showed a strong positive relationship of both bleaching and mortality with satellite-
derived heat stress (DHW), with the rate of biological response to heat stress varying among ocean
basins and bleaching years (June to May periods). Comparing observations of signi�cant reef-level
bleaching (Fig. 2, Extended Data Fig. 5) across all basins, bleaching sensitivity to heat stress was
generally highest in 2015-16 and lowest in 2016-17 (Fig. 2a), re�ecting either acclimatization or
adaptation of surviving corals, or loss of heat-sensitive phenotypes [27]. Across years, bleaching
sensitivity was highest in the Caribbean-Atlantic basin and lowest in the Asia-Paci�c (Fig. 2b). Analysis of
the full best-�tting model of signi�cant bleaching to heat stress (Extended Data Fig. 5) showed
interactions between years and regions, with the Caribbean mainly showing greater sensitivity than the
Asia-Paci�c in 2014-15 and 2015-16 than in 2016-17. However, the highest sensitivity was seen in the
Indian Ocean/Middle East in 2016-17 (Extended Data Fig. 5). Corals in all years and basins generally
bleached strongly in response to heat stress at levels above the 4 °C-week threshold normally used to
classify signi�cant bleaching [24]. Patterns of severe bleaching (Extended Data Fig. 6) were similar to
those seen in signi�cant bleaching, including greater sensitivity in 2015-2016 than 2016-2017 in the Asia-
Paci�c (Extended Data Fig. 6a), and reduced sensitivity in 2016-2017 in the Caribbean-Atlantic. Notably,
2014-2015 showed more severe bleaching at similar levels of heat stress than 2015-2016 in the
Caribbean-Atlantic (Extended Data Fig. 6b). However, curves modeled for severe bleaching (Extended
Data Fig. 6) had greater uncertainty than those for signi�cant bleaching (Extended Data Fig. 5), likely due
to the much smaller number of observations and uneven spatial distribution of severe bleaching.
Fortunately, reports of severe were sporadic and scattered across the basins.
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Higher heat stress levels were required to cause coral mortality than bleaching (at both signi�cant and
severe levels). Records of signi�cant (>10%) coral mortality again varied among regions and years, with
risk of signi�cant mortality risk clearly increasing with heat stress level in the two Indo-Paci�c regions
(Fig. 3, Extended Data Fig. 7). Because there were less than half the number of mortality reports as
bleaching reports, mortality response curves (Fig. 3, Extended Data Fig. 7) were less well constrained than
those for bleaching (Fig. 2, Extended Data Fig. 5). Nevertheless, the strong temperature-dependence of
mortality in the two Indo-Paci�c regions supports the use of 8°C-weeks as a predictor of signi�cant
mortality. In contrast, the lack of a statistically discernable positive relationship between mortality and
heat stress in the Caribbean in any year suggests that heat stress was probably not a primary driver of
mortality in the Caribbean during 2014-17 (discussed below).

In 2016, over 15% of global reef area, including large areas of the tropical Paci�c, the Indo-Paci�c, and
some of the Northwestern Hawaiian Islands, reached or exceeded heat stress of 16 °C-weeks, prompting
the addition of a new Alert Level to the Coral Reef Watch products (Fig. 1). Surveys conducted in these
areas showed most reefs suffered rapid and severe mortality of many coral species [28-32]. This level of
heat stress corresponded with very high probabilities of signi�cant bleaching (Fig. 2, Extended Data Fig.
5), and greater than 50% probabilities of severe bleaching (Extended Data Fig. 6), and signi�cant
mortality (Fig. 3, Extended Data Fig. 7). Establishment of a new Alert Level 3 at DHW≥16 °C-weeks will
help capture the increasingly long marine heatwaves [3, 4] that became especially apparent during GCBE3
and are predicted to become more frequent in the future [7]. In contrast to the recent past, marine
heatwaves in the tropics now span multiple seasons and in 2014-17 persisted more than a year on some
equatorial reefs (e.g., record heat stress in 2014/17 at Jarvis Island in the central Paci�c Ocean resulted
from over 12 months of heat stress accumulation, with DHW ≥ 4°C-weeks lasting from March 2015 to
May 2016 [29]).

Assessing the Global Footprint of the 2014-17 Bleaching

Using statistically modeled bleaching and mortality thresholds for each basin and year from the
maximum satellite-measured heat stress at each reef-containing pixel, we estimate that 51% of global
coral reef locations suffered signi�cant bleaching with 15% suffering signi�cant (>10%) mortality. This
mortality likely represents much of the loss of the world’s corals during 2009-2018 that was reported in
the most recent global coral status report [33]. While GCBE3 progressed globally for three full years (June
2014-May 2017), bleaching and mortality varied in both time and space in relation to heat stress across
the 21 GCBE3 regions in each year (Fig. 4).

In general, higher heat stress resulted in higher bleaching and mortality throughout the event and most
GCBE3 regions followed this pattern (Figs. 2-3). However, more complex patterns in the ratio between
bleaching and mortality emerge in some areas. Factors known to modulate bleaching sensitivity to DHW
include cloud cover [34], nutrients [35], species assemblages, and selective mortality of more sensitive
species or genotypes. Selective mortality has been seen in the Great Barrier Reef [36, 37] and
elsewhere[38, 39], including during heat stress-associated disease outbreaks [40, 41].
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Heat stress-driven mortality in most regions was modeled to occur in 30-50% of pixels where bleaching
occurred. However, corals in much of the Caribbean-Atlantic bleached at similar heat-stress levels as
other basins (Fig. 2, Extended Data Fig. 5) but showed remarkably low new mortality, with fewer than 15%
of modeled ‘bleaching’ pixels experiencing signi�cant mortality. This may have resulted from a long
history and higher frequency of heat stress events in the Caribbean-Atlantic [1, 3]. Caribbean coral losses
have been quite high in recent decades [33, 42], including bleaching-related mortality during both prior
global bleaching events [18, 43], the 1982-83 bleaching event [44], the 2005 Caribbean bleaching event [8],
and now disease-related mortality due to Stony-Coral Tissue Loss Disease [45]. These have combined to
reduce coral density and diversity. Depauperate in species diversity for millennia, the decline in sensitive
coral species since the 1980s has left many Caribbean reefs with especially stress tolerant species and
genotypes that survive bleaching [46] but provide diminished ecosystem function [47, 48]. The exception
within that basin were the unique coral assemblages found off the coast of Brazil [49]. These the turbid-
zone corals experienced both low bleaching and low mortality during GCBE3. Unfortunately, these corals
have suffered major losses due to heat stress subsequent to 2017 [50]. 

Coral bleaching and mortality during the GCBE3 were much greater than those reported in either the 1998
or 2010 global bleaching events [9, 25, 26, 33]. Using DHW calculated from a dataset covering 1982 to
present, heat stress during the 2014-17 event (or even in 2016 alone) was more intense and widespread
than prior mass bleaching events (Fig. 5).

Of course, bleaching has continued since GCBE. Some reefs damaged during May 2016 – June 2017
continued to see bleaching later in 2017 [19, 20], while others saw severe bleaching in subsequent years
[21, 50, 52].

      The 2014-17 GCBE3 was more widespread and damaging than any prior bleaching event on record,
highlighting the increasing threat of climate change to coral reefs and further indicating that global
warming is outpacing the capacity of corals to physiologically resist heat stress on most reefs [9, 52, 53]
and may result in collapse or severe bottlenecks in coral populations. The occurrence and intensity of
marine heatwaves on coral reefs [1, 25] and elsewhere [4], is accelerating because of anthropogenic
release of heat-trapping gases and the resultant greenhouse effect, and is predicted to further intensify [6,
54]. As coral reefs are ecosystem builders that protect shorelines from wave-driven �ooding and erosion,
and provide food, medicines, cultural identity, and livelihoods for over a billion people [55], these essential
ecosystems urgently need protection. Our study found severe coral reef losses due to global warming
throughout this protracted three-year bleaching event; an acceleration of the threat that has already
placed them as one of the world’s most climate-threatened ecosystems [56]. Immediate global action to
reduce, and ultimately reverse, escalating emissions of greenhouse gases is essential to halt the
accelerating coral loss and associated reef degradation around the world.
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Figures

Figure 1

Global pattern of maximum heat stress from 2014-17. Heat stress categories [1] of Alert Levels 1 and 2
correspond to heat stress likely to cause signi�cant coral bleaching (DHW ≥ 4 °C-weeks) and severe
bleaching with signi�cant mortality (DHW ≥ 8 °C-weeks) respectively, and new Alert Level 3 corresponds
to heat stress likely to cause severe, widespread mortality (DHW ≥ 16 °C-weeks). See Extended Data Fig.
1a for map showing global reef locations.

1.        Skirving, W., et al., CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite
Version 3.1. Remote Sensing, 2020. 12(23).
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Figure 2

Fitted response curves for observed signi�cant coral bleaching (affecting >10% of corals) as a function
of heat stress varied among years and basins. Bleaching response curves, with 95% con�dence limits
(shading), in each of the: a three bleaching years 2014-15, 2015-16, 2016-17 and b three regions Asia-
Paci�c (AP), Caribbean-Atlantic (CA), and Indian Ocean-Middle East (IM)). The vertical axis is the
probability of observed signi�cant bleaching estimated from the bleaching database.
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Figure 3

The response curves for observed signi�cant coral mortality (affecting >10% of corals) as a function of
heat stress varied among ocean basins across all years. The vertical axis is the probability of signi�cant
mortality calculated from the mortality data.

Figure 4
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Projected coral bleaching and mortality impacts during GCBE3. Model-calculated area of reef impacted
by signi�cant (>10%) coral bleaching (solid diamonds) and mortality (sub-diamonds) for the 21 GCBE3
regions, in units of number of ~5×5 km2 satellite pixels (scale at left). The Central solid black line denotes
Equator through annual cycles. Colors represent the maximum heat stress (DHW data set in units of °C-
weeks) in each region in that bleaching year (DHW scale at lower-left); to improve legibility white text
used in diamonds for heat stress below 2 °C-weeks and above 9 °C-weeks; black text used for 2-9 °C-
weeks. The inset (top-right) indicates the total reef area for each GCBE3 region (scale divisions in inset
correspond with area scale in lower left of main image). Predicted mortality is shown only where the area
exceeded 500 pixels (~0.1% of reef pixels). Eastern Atlantic region not shown due to small reef area (4 of
53,997 reef-containing pixels). Data in Extended Data Table 3.

Figure 5

Percentage of global reef pixels reaching DHW ≥ 4 and 8 °C-weeks calculated from the NOAA Optimum
Interpolation Sea Surface Temperature (OISST), Version 2.1 [2]. Years on the x-axis correspond to �rst
year of each bleaching-year couplet (i.e., 2014 = June 2014 - May15). Green, dashed boxes correspond to
major El Niño-Southern Oscillation events.

2.        Banzon, V., et al., Improved Estimation of Proxy Sea Surface Temperature in the Arctic. Journal of
Atmospheric and Oceanic Technology, 2020. 37(2): p. 341-349.
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