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Abstract. Quantification and mapping of surficial seabed sediment organic carbon have wide-scale relevance
for marine ecology, geology and environmental resource management, with carbon densities and accumulation
rates being a major indicator of geological history, ecological function and ecosystem service provisioning,
including the potential to contribute to nature-based climate change mitigation. While global analyses can ap-
pear to provide a definitive understanding of the spatial distribution of sediment carbon, regional maps may
be constructed at finer resolutions and can utilise targeted data syntheses and refined spatial data products and
therefore have the potential to improve these estimates. Here, we report a national systematic review of data on
organic carbon content in seabed sediments across Canada and combine this with a synthesis and unification
of the best available data on sediment composition, seafloor morphology, hydrology, chemistry and geographic
settings within a machine learning mapping framework. Predictive quantitative maps of mud content, dry bulk
density, organic carbon content and organic carbon density were produced along with cell-specific estimates of
their uncertainty at 200 m resolution across 4 489 235 km2 of the Canadian continental margin (92.6 % of the
seafloor area above 2500 m) (https://doi.org/10.5683/SP3/ICHVVA, Epstein et al., 2024). Fine-scale variation
in carbon stocks was identified across the Canadian continental margin, particularly in the Pacific Ocean and
Atlantic Ocean regions. Overall, we estimate the standing stock of organic carbon in the top 30 cm of surficial
seabed sediments across the Canadian shelf and slope to be 10.9 Gt (7.0–16.0 Gt). Increased empirical sediment
data collection and higher precision in spatial environmental data layers could significantly reduce uncertainty
and increase accuracy in these products over time.

1 Introduction

The organic carbon contained in seafloor sediments has a
major influence on the global carbon cycle and Earth’s cli-
mate (Hülse et al., 2017; Bauer et al., 2013). Seabed sed-
iments have been estimated to accumulate approximately
126–350 Mt of organic carbon per year (Keil, 2017; Berner,
1982) and contain 87 Gt of organic carbon in their top 5 cm

(Lee et al., 2019), 168 Gt in the top 10 cm (LaRowe et al.,
2020a) and up to ∼ 2300 Gt in the top 1 m (Atwood et al.,
2020), with the latter being equivalent to nearly twice that of
soils on land. Continental shelves have the highest densities
of sediment carbon across the global ocean, covering only
5 %–8 % of the marine area but an estimated 15 %–19 % of
surficial organic carbon stocks (LaRowe et al., 2020a; At-
wood et al., 2020) and 80 % of annual carbon burial (Bauer
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et al., 2013; Burdige, 2007). Continental margin zones (con-
tinental shelves and slopes) also contain the largest spatial
variation in organic carbon due to highly heterogenous ge-
ological, geographic, biological and oceanographic settings
(Smeaton et al., 2021; Diesing et al., 2017, 2021; Atwood et
al., 2020). They are also subjected to high levels of human ac-
tivity, being impacted by many coastal and marine industries,
including fishing, shipping, energy generation, telecommu-
nication, mineral extraction and pollution from land-based
activities (Halpern et al., 2019; Amoroso et al., 2018; Keil,
2017). Quantification and mapping of organic carbon on
continental margins is therefore imperative for best-practice
seabed management, with the densities and accumulation
rates being a major indicator of ecological function, geolog-
ical history and ecosystem service provision (Legge et al.,
2020; Snelgrove et al., 2018; Middelburg, 2018).

In the marine environment, organic carbon can originate
from the fixation of carbon dioxide (CO2) by primary pro-
ducers in the photic zone or via lateral transport from ter-
restrial sources (LaRowe et al., 2020b). Organic carbon then
passes through a variety of biotic and abiotic pathways be-
ing consumed, transformed, respired or remineralised, with
a large proportion converted back into inorganic compounds,
leaving only ∼ 5 % of marine production and less than 1 %
of Earth’s gross production eventually reaching the seafloor
(Middelburg, 2019; Hülse et al., 2017; Turner, 2015; Bauer
et al., 2013; Burdige, 2007). Once on the seafloor, a similarly
complex process occurs on and within the sediment, with a
wide range of biotic, biochemical and physical processes all
influencing the rates of accumulation, remineralisation and
resultant long-term burial, with ∼ 90 % of all carbon reach-
ing the seafloor being remineralised (LaRowe et al., 2020b;
Middelburg, 2018, 2019; Arndt et al., 2013). Even when con-
sidering this complex carbon cycle, the mass and accumula-
tion of organic carbon in surficial seabed sediments will still
have a direct influence on the scale of long-term carbon stor-
age at the seafloor (LaRowe et al., 2020a; Middelburg, 2018).

Marine habitats are being increasingly recognised as con-
tributors to nature-based climate change mitigation (also
known as nature-based climate solutions and natural cli-
mate solutions) due to their ability to both fix CO2 and
store organic carbon for centennial to millennial timescales
(Macreadie et al., 2021; Hoegh-Guldberg et al., 2019). This
“blue carbon” potential was initially recognised in coastal
vegetated habitats (i.e. mangrove, seagrass and saltmarsh)
(Nellemann et al., 2009; Duarte et al., 2005) but has more re-
cently been applied to other habitats such as kelp forests and
unvegetated sediments (Luisetti et al., 2020; Raven, 2018;
Avelar et al., 2017). There is increasing evidence that hu-
man activities are influencing seabed sediment carbon stores
from both perturbations of upstream processes and physical
impacts directly on the seafloor (Cavan and Hill, 2022; Ep-
stein et al., 2022; Keil, 2017; Bauer et al., 2013). For exam-
ple, a recent study estimated that the direct physical impacts
from global fishing activities could cause considerable rem-

ineralisation of seabed sediment organic carbon stocks back
to CO2 (Sala et al., 2021). However, the validity of the scale
of these estimates has been called into question (Hiddink et
al., 2023; Hilborn and Kaiser, 2022; Epstein et al., 2022). By
improving sediment carbon mapping products, there may be
opportunities to better research and design appropriate man-
agement strategies to limit potential remineralisation from
disturbance (Epstein and Roberts, 2022; Sala et al., 2021;
Luisetti et al., 2019).

Historically, studies measuring seabed sediment carbon
stocks and accumulation rates had a small geographic scope,
largely considering the ecological function, geological char-
acteristics or biochemical functioning at local to regional
scales (see the citations within LaRowe et al., 2020b; Snel-
grove et al., 2018; Middelburg, 2018; Burdige, 2007). In re-
cent years, made possible by modern machine learning and
statistical spatial prediction techniques, there has been in-
creasing interest in estimating the size and distribution of
carbon standing stocks and accumulation rates at national
to global scales to better understand natural carbon cycles
and biological productivity and to identify the potential for
improved management as a natural climate mitigation strat-
egy (Restreppo et al., 2021; Smeaton et al., 2021; Diesing et
al., 2021; Atwood et al., 2020; LaRowe et al., 2020b; Lee et
al., 2019; Wilson et al., 2018; Avelar et al., 2017). Although
global mapping products can appear to give a complete un-
derstanding of seabed sediment organic carbon stocks (Lud-
wig et al., 2023; Atwood et al., 2020; Lee et al., 2019), re-
gional mapping studies which utilised targeted data synthe-
ses, refined spatial data products and finer-resolution outputs
have shown distinct spatial patterns in the organic carbon
distribution and disparate estimates of total standing stocks
when compared with these global studies (Smeaton et al.,
2021; Diesing et al., 2017, 2021; Luisetti et al., 2020; Wil-
son et al., 2018).

Canada has the world’s longest coastline and approxi-
mately the seventh largest exclusive economic zone (EEZ)
(Fig. 1). It could therefore be expected to contain a signif-
icant proportion of the global stock of seabed sediment or-
ganic carbon. Data from recent global studies estimated that
the Canadian EEZ contains approximately 2.2 Gt of organic
carbon in the top 5 cm and 48 Gt in the top metre of seabed
sediments, equivalent to ∼ 2.3 % of the total global marine
sediment carbon stocks covering around 1.3 % of the area
(Atwood et al., 2020; Lee et al., 2019). However, these mod-
elled estimates from global studies are at coarse spatial reso-
lutions, have incomplete coverage of the Canadian EEZ and
contain very limited empirical data from within the Canadian
EEZ itself. Here, we conduct a systematic review of data
on seabed sediment organic carbon content across Canada
and combine this with a synthesis and unification of best
available data on sediment composition, seafloor morphol-
ogy, hydrology and chemistry in a machine learning predic-
tive mapping process, to construct the first high-resolution
national assessment of Canadian seabed sediment organic
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carbon stocks (Epstein et al., 2024). To aid clarity, a work-
flow diagram of the proceeding Methods and Results sections
is shown in Fig. 2.

2 Methods

2.1 Predictor variables

2.1.1 Bathymetry

Best available contiguous digital elevation model (DEM)
data were combined and unified to a 200 m× 200 m equal-
area grid covering the Canadian EEZ (coordinate reference
system (CRS) EPSG:3573 – WGS 84 – North Pole Lambert
Azimuthal Equal Area Canada) (Table 1; see Appendix A2
for further details). Data were filtered to contain only sub-
tidal areas (those cells with elevations of less than or equal
to 0 m), with the resultant extent defined as the study area
spatial maxima (Fig. 1).

2.1.2 Benthic terrain features

A set of 10 benthic terrain features were constructed from
the unified bathymetric layer (Table 1). As benthic terrain
measures use data on the depth of a location relative to the
depth of surrounding cells up to a given distance, bathymet-
ric data within a given buffer outside the study area maxima
were included as needed to avoid edge effects in each ter-
rain feature. Slope and total curvature were calculated using
the terra.terrain (Hijmans, 2022) and spatialEco.curvature
(Evans and Murphy, 2021) functions respectively. As these
measures can be particularly sensitive to artifacts from the
DEMs and projections, they were constructed at two reso-
lutions – the native 200 m resolution and, after aggregating
the bathymetry 5-fold, 1 km× 1 km (termed “smoothed”).
Smoothed layers were disaggregated back to a 200 m reso-
lution to maintain uniformity across predictor layers.

Benthic position index (BPI) and vector ruggedness mea-
sure (VRM) were each calculated using the MultiscaleDTM
package at three different levels to capture both small lo-
cal features and larger spatial variation in terrain (Maxwell
and Shobe, 2022; Ilich et al., 2021). Benthic position index
was calculated as the difference between the depth of a fo-
cal cell and the mean of cells contained in annulus-shaped
windows of 0.2 to 5 km (BPI fine), 2 to 25 km (BPI medium)
and 4 to 100 km (BPI broad). Vector ruggedness was mea-
sured by considering variation in the depth surrounding each
cell within square windows of widths 1 km (VRM fine),
5.8 km (VRM medium) and 11.6 km (VRM broad). Due to
extremely inhibitive computational times when calculating
VRM broad, BPI medium and BPI broad at 200 m resolu-
tion, for these features the bathymetric layer was first aggre-
gated to 400 m resolution before feature calculation and then
disaggregated back to 200 m to maintain uniformity.

2.1.3 Predictors describing the geographic setting

The geographic setting of each cell was described by its dis-
tance to the shore and rivers, its broad bioregional classifi-
cation and a proxy measure for exposure describing the de-
gree of exposure vs. shelteredness (Table 1). The geographic
setting features are also influenced by the values of the sur-
rounding pixels, and therefore appropriate buffers were also
applied to the processing of these layers to avoid edge effects.
The distance to the shore was measured by the Euclidian dis-
tance to the nearest land cell (indicated by an “NA” value
in the bathymetry layer), while “bioregion” was defined by
the Fisheries and Oceans Canada Federal Marine Bioregions
classification (DFO, 2022). The bioregion polygons were
edited to include all bathymetry cells and re-classified with
an integer scale of 1 to 12 from east to west.

CanVec is a digital cartographic reference product pro-
duced by Natural Resources Canada (NRCan) which in-
cludes the locations of rivers across Canada at three mapped
scales (NRCan, 2019). Firstly, the coarsest-scale data (1 :
15 000 000) were projected onto the CRS of the bathymetry
layer and converted from polylines to a 2 km resolution
raster. A 2 km buffer was added around each river to ensure
overlap of river mouths with the bathymetry data. The resul-
tant raster layer was resampled onto the bathymetry raster,
and the grid distance of each bathymetry cell to the near-
est river-mouth cell was calculated using the terra.gridDist
function (Hijmans, 2022). This was then repeated for the
medium-scale (1 : 5 000 000) and fine-scale (1 : 1 000 000)
layers with each river raster overlain with the previous
coarser-scale layer to ensure all the rivers were included as
the scales decreased.

To approximate the exposure setting of each cell, data on
the mean distance from the shore of the surrounding cells
were used to construct a proxy value of fetch. Using the
terra.focal function (Hijmans, 2022), the mean distance to
the shore of the surrounding pixels was calculated in square
windows of widths 10, 20, 50, 100, 175 and 250 km. Due to
extremely inhibitive computational times when calculating
these values at the two largest distances, the distance to the
shore layer was first aggregated to 400 m resolution before
focal calculations of these components and then disaggre-
gated back to 200 m to maintain uniformity. The maximum
value in each layer was then set to the relative window size
and all data in each layer normalised between 0 and 1. The
mean of all the layers was then calculated, which resulted in
a continuous measure of relative exposure or shelteredness
ranging from 0 (highly sheltered) to 1 (highly exposed).

2.1.4 Satellite-derived predictors

Using data from the Copernicus Marine Data Store, two
layers were created, approximating the mass of suspended
particulate matter in surface waters and the orbital veloc-
ity of waves at the seafloor. Data on suspended particulate
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Table 1. Summary of the predictor variables constructed for the Canadian EEZ. For more information on the methods used to derive these
layers, see Sect. 2.1.

Predictor variable Unit Region Source Native resolution Temporal range

Bathymetry m BC NRCan (2021) 10 m NA

Arctic IBCAO V4.2 (Jakobsson et al., 2020) 200 m NA

Global GEBCO (2022) 0.0042° NA

Slope ° Canada This study 200 m NA

Slope smoothed ° Canada This study 1 km NA

Total curvature rad/m Canada This study 200 m NA

Total curvature smoothed rad/m Canada This study 1 km NA

BPI – fine m Canada This study 200 m NA

BPI – medium m Canada This study 400 m NA

BPI – broad m Canada This study 400 m NA

VRM – fine – Canada This study 200 m NA

VRM – medium – Canada This study 200 m NA

VRM – broad – Canada This study 400 m NA

Distance to shore m Canada This study 200 m NA

Bioregion – Canada DFO (2022) NA NA

Distance to rivers – large m Canada NRCan (2019) 1 : 15 000 000 NA

Distance to rivers – medium m Canada NRCan (2019) 1 : 5 000 000 NA

Distance to rivers – small m Canada NRCan (2019) 1 : 1 000 000 NA

Exposure proxy – Canada This study 200 m NA

SPM (surface) g m−3 Global Copernicus (2022b) 4 km 2007–2019

Wave velocity (seafloor) m s−1 Arctic Copernicus (2022a) 3 km 2007–2019

Global Copernicus (2022c) 0.2° 2007–2019

Mean current velocity (seafloor) m s−1 BC Peña et al. (2019) 3 km 2007–2019

Salish Sea SalishSeaCast ERDDAP v19-05a 500 m 2007–2019

Arctic and Atlantic ANHA12 (Hu et al., 2019)b 0.0833° 2007–2019

Temperature (seafloor) °C BC Peña et al. (2019) 3 km 2007–2019

°C Salish Sea SalishSeaCast ERDDAP v19-05a 500 m 2007–2019

°C Arctic and Atlantic ANHA12 (Hu et al., 2019)b 0.0833° 2007–2019

Salinity (seafloor) ppt BC Peña et al. (2019) 3 km 2007–2019

Salish Sea SalishSeaCast ERDDAP v19-05a 500 m 2007–2019

Arctic and Atlantic ANHA12 (Hu et al., 2019)b 0.0833° 2007–2019

Ice thickness (surface) m Arctic and Atlantic ANHA12 (Hu et al., 2019)b 0.0833° 2007–2019

Ice concentration (surface) % Arctic and Atlantic ANHA12 (Hu et al., 2019)b 0.0833° 2007–2019

Dissolved oxygen (seafloor) mol m−3 Global Bio-ORACLE V2.2 (Assis et al., 2018) 0.0833° 2000–2014

Primary production (surface) g m−3 d−1 Global Bio-ORACLE V2.2 (Assis et al., 2018) 0.0833° 2000–2014

Chlorophyll concentration (surface) mg m−3 Global Bio-ORACLE V2.2 (Assis et al., 2018) 0.0833° 2000–2014

Maximum current velocity (seafloor) m s−1 Global Bio-ORACLE V2.2 (Assis et al., 2018) 0.0833° 2000–2014

Notes: BC: British Columbia; BPI: benthic position index; VRM: vector ruggedness measure; SPM: suspended particulate matter. a See https://salishsea.eos.ubc.ca/erddap/index.html (last access: 1
February 2023), Soontiens and Allen (2017) and Soontiens et al. (2016). b See
https://canadian-nemo-ocean-modelling-forum-community-of-practice.readthedocs.io/en/latest/Institutions/UofA/Configurations/ANHA12/index.html (last access: 1 February 2023). NA – not applicable
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Figure 1. Map of the Canadian Exclusive Economic Zone (EEZ). The study area’s spatial maxima (red) were defined using the best available
bathymetry data and cover the entire sub-tidal portion of the Canadian EEZ (see the high-resolution figure for further details around the
coastline and Sect. 2.1.1 for more details). This is overlain by the maximum potential modelling extent (grey), which indicates only those
areas where data were present for all the predictor variables (see Sect. 2.1.7). Due to the distribution of available response data, the final
modelling domain was limited to a depth of 2500 m (see Sect. 2.4) and is indicated with the colour relative to the estimated depth, from 0
(light blue) to −2500 (black). Country outlines from World Bank Official Boundaries, available at https://datacatalog.worldbank.org/search/
dataset/0038272 (last access: 16 May 2023).

matter (SPM) in surface waters across Canada from 2007
to 2019 were extracted in netCDF format from the ACRI-
ST (Sophia Antipolis, France) company’s global Bio-Geo-
Chemical products at 4 km spatial resolution and monthly
temporal resolution (Copernicus, 2022b). The climatologi-
cal mean across this entire period was then calculated for
each cell and the netCDF converted to a raster for further pro-
cessing. Due to the complex nature of the Canadian coastline
and the large disparity in the spatial resolution of the satellite
data product (4 km) and the layers created above (200 m), the
satellite raster layer was allowed to extrapolate by one cell
in its native resolution by taking the mean value of neigh-
bouring pixels. This allowed better overlap of satellite lay-
ers with the study area maxima at the coastline but limited
over-extrapolation. The raster layer was then re-projected to
the equal-area CRS and resampled onto the bathymetry layer
using cubic-spline interpolation. Due to a lack of consistent
SPM data recorded in the northern Arctic Basin, this portion
of the data layer was manually removed within QGIS.

To calculate the estimated orbital velocity of waves at
the seafloor, two satellite wave data products were com-
bined with the unified bathymetry layer as constructed above.
Hourly data from 2007 to 2019 at the significant wave height
(Hs; VHM0) in metres and the primary wave swell mean
period (Tz; VTM01_SW1) in seconds were extracted from
the 0.2° resolution Global Ocean Wave Reanalysis (WAV-

ERYS) produced by Mercator Océan International (Coper-
nicus, 2022c) and the 3 km resolution Arctic Ocean Wave
Hindcast produced by MET Norway (Copernicus, 2022a).
All data were processed as the SPM data layer (except for
a lack of removal of the Arctic Basin data) and converted
to an estimate of orbital wave velocity at the seafloor (Urms;
m s−1) using the following equation from Soulsby (2006):

Urms =

(
H s
4

)(g
d

)0.5
exp

−
[(

3.65
T z

)(
d

g

)0.5
]2.1

 , (1)

where g is the acceleration due to gravity (9.806 m s−2) and d
is the water depth (m), taken as the unified bathymetry layer
multiplied by −1 and all values less than 1 m depth rounded
up to the nearest metre (as needed for the above calculation).
The resultant Arctic orbital velocity data layer was then bias-
corrected to the global orbital velocity data layer utilising
the qmap package with quantile mapping using a smooth-
ing spline (Gudmundsson et al., 2012). Finally, the two data
layers were overlain with the regional Arctic data, taking pri-
ority over the global data where available.

2.1.5 Ocean circulation model predictors

To incorporate the best available regional evidence, data
on the mean surface ice cover, seafloor salinity, tempera-
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ture and current velocity were collated from three different
ocean circulation model products covering different regions
of Canada (Table 1; see Appendix A3 for further details).
Three-dimensional data for salinity, temperature, u velocity
(eastward) and v velocity (northward) were extracted from
each model, and the climatological mean across all the time
points between 2007 and 2019 was calculated. For each hor-
izontal cell, data were only retained from the lowest vertical
cell within a given position (i.e. the cell which makes contact
with the seafloor). Individual model outputs were then con-
verted to spatial point data using the cell centroid positions
and transformed to the unified CRS. Point data were then
converted to rasters with the respective resolution of each
model and the mean value taken if two points from the same
model lay within a single raster cell as an artifact of repro-
jection. As the Arctic–Atlantic model (ANHA12) has a vary-
ing horizontal resolution, point data were rasterised using the
smallest resolution of the original model (1.6 km) and then
interpolated using the gstat package (Gräler et al., 2016) and
a nearest-neighbour interpolation method (including cells for
land within the original model grid to suppress extrapola-
tion). For all three models, the mean current velocity was
then calculated as the root mean square of the u-velocity and
v-velocity values in each cell. Finally, as carried out for the
satellite data layers, each raster was allowed to extrapolate
by one cell at its native resolution (or for the case of the
ANHA12 model – its median resolution) and was resampled
onto the 200 m bathymetry grid using cubic-spline interpo-
lation. The three rasters were then combined with data only
being assigned to the spatial extent of the respective biore-
gions as defined in Sect. 2.1.3. Although this means that dif-
ferent model products were used to measure the same predic-
tor variable in different regions, which can create biases, the
bioregion predictor variable was included as a co-variate in
all the models which included the ocean circulation variables,
thus allowing for interactive effects and accounting for differ-
ences in circulation model structures. Combining different
models can also create edge effects. However, the Arctic–
Atlantic model is entirely spatially distinct and so contains
no edges in common with other models. The only significant
edge between the remaining two models lies at the mouth of
the Juan de Fuca Strait, and minimal disparity was seen (with
the other common edge occurring in the narrows of Johnson
Strait).

Predictor layers describing the mean concentration and
thickness of sea ice for the same temporal period across the
Arctic and Atlantic were also derived from the ANHA12
model. Processing of model data and spatial rasters was con-
ducted as above, except that a value of zero ice concentra-
tion and thickness was applied to all cells across the British
Columbian Pacific bioregions.

2.1.6 Global model predictors

Four additional predictor variables were derived from Bio-
ORACLE version 2.2, a global unified marine environmental
data-layer collation, which gives climatological mean values
at 1/12 degree resolution, for 2000–2014 and a wide range of
environmental variables (Assis et al., 2018). Although these
datasets are of a lower resolution when compared with the
regional data used above, based on previous research, there
were some additional variables not available from the re-
gional circulation models which were considered potentially
important for carbon modelling (Diesing et al., 2021; At-
wood et al., 2020). Three described the oceanographic chem-
istry and biology – i.e. primary production and chlorophyll
content of the surface water column and dissolved oxygen
concentration at the seafloor. The fourth predictor was an ad-
ditional measure of current velocity (maximum current ve-
locity), which was selected on top of the previously derived
mean values because current velocity has been identified as
a particularly strong predictor within previous seafloor sed-
iment composition and carbon content predictive mapping
studies (Gregr et al., 2021; Diesing et al., 2021; Mitchell
et al., 2019). Raster data were downloaded from the Bio-
ORACLE website and processed as the satellite data layers
(i.e. allowed to extrapolate by one cell at its native resolution
by taking the mean value of neighbouring pixels, reprojected
to the unified equal-area CRS and resampled to the unified
200 m grid using cubic-spline interpolation).

2.1.7 Final collation of predictor variables

The resulting 28 predictor variable raster layers were com-
bined into a single raster stack and any cells containing
NA values removed, leaving only those cells which con-
tained values across all the predictor layers. The remaining
cells covered 92.3 % of the sub-tidal zone of the Canadian
EEZ and delineated the maximum potential modelling area
(Fig. 1). The final predictor variable layers are shown in the
Supplement.

2.2 Sediment mud content data

Empirical point data on the seabed sediment mud content
across the Canadian EEZ were extracted from two sources
(Enkin, 2024; NRCan, 2022) (see Appendix A4 for further
information). Data were only retained if they originated from
within the top 30 cm of the sediment and had associated
geographic position information (latitude–longitude coordi-
nates; lat–long). Data were further filtered by excluding those
where the sum of mud, sand and gravel content was greater
than 102 % and lower than 98 % – to allow for rounding er-
rors but to exclude invalid data. Data were also excluded if
samples or sub-samples were not present from at least the top
1 to 5 cm below the sediment surface within a given sampling
event. After data filtering, the mean percentage of mud was
taken across replicates or sub-samples, leaving a single value
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for each sampling event. We chose to concentrate on sedi-
ment mud content as this has previously been identified as the
key sediment composition component from a number of re-
lated carbon mapping studies (Smeaton et al., 2021; Diesing
et al., 2017, 2021; Pace et al., 2021; Wilson et al., 2018). Fi-
nally, mud content data were projected onto the CRS of the
predictor layers and only retained where overlap occurred.
This led to a final dataset of 19 730 samples (Fig. B1).

2.3 Organic carbon content data

2.3.1 Organic carbon data collation and extraction

Data on the percentage organic carbon content (%OC) within
dried surface sediments were collected from three different
structured searches. Firstly, a systematic literature review
was conducted through Web of Science and Scopus. Both
searches were conducted on 21 September 2022. Within Web
of Science, its “Core collection” was searched via the field
“Topic”, which examines a paper’s title, abstract, author, key-
words and “keywords plus”. Within Scopus, the search was
run via the field “Title-Abs-Key”, which scans a paper’s ti-
tle, abstract and keywords. Within both databases, the same
search string was used.

(``organic carbon'' OR ``organic matter''
OR ``organic content'' OR TOC OR

TOM) AND (coast* OR sea* OR ocean* OR estuar*
OR marine OR gulf) AND

(sediment* OR mud* OR sand* OR clay* OR silt*
OR gravel* OR seabed) AND

Canad*

All articles identified from the searches were exported into
a single Zotero library with duplicates removed, leaving 1581
results. Screening was conducted via a hierarchical process
that first assessed the title, then the abstract and finally the
full text. At each stage an article was assessed against the
inclusion criteria described below, with those considered rel-
evant or of unclear relevance passing to the next level of as-
sessment.

The inclusion criteria were defined as a (1) study con-
ducted on sub-tidal seabed sediments (those concerning rock,
shale or fauna were not included); (2) physical samples col-
lected using a seabed sediment sampling device (e.g. cores or
grabs – sediment-trap samples were not included); (3) sam-
ples from within the Canadian EEZ; (4) studies concerning
the chemical composition of the sediment; and (5) organic
carbon content (%) directly measured after separation of or-
ganic and inorganic components (e.g. by acidification). After
the title-screening stage, 242 articles remained, followed by
123 remaining after abstract screening and a final set of 49
articles left for data extraction after review of the full text.
Four additional primary literature papers were added based
on expert advice. This included two large data collation stud-
ies, one concentrating on the Arctic (CASCADE; Martens et
al., 2021) and one having a global scope (MOSAIC v2; Par-
adis et al., 2023).

The second structured search was conducted on the Cana-
dian Federal Science Libraries Network – a repository which
contains departmental publications, reports and datasets from
seven science-based Canadian government departments. The
search was carried out on 7 November 2022 using the same
search string as for the primary literature and querying all the
fields. The search led to only 178 results, and therefore each
result was assessed individually against the selection crite-
ria, first by their abstract and then by a full-text assessment,
leading to data extraction from 15 reports. The third search
was carried out on 15 November 2022 using GEOSCAN
– the NRCan bibliographic database for scientific publica-
tions. As GEOSCAN does not allow search strings contain-
ing “AND”, the search was conducted on all the fields using
only the terms “organic carbon” OR “TOC” OR “OC”, lead-
ing to 655 search results. The metadata of all the entries were
exported as a text file and further refined using a secondary
manual search for the remainder of the search terms listed
above within Microsoft Excel. This led to a final set of 233
results, 178 of which were excluded by screening of the title
and a further 51 excluded by abstract or full-text screening,
leaving 4 reports for data extraction.

In total, these three structured searches of the primary lit-
erature and government reports led to 72 publications for
data extraction. In addition to data on the %OC, metadata
extracted included the maximum depth of the sample into
the sediment (cm), geographic position (lat–long), sample
ID, year of sampling (approximated as the publication year
where not clearly stated), sampling method (e.g. multicorer,
Van Veen grab) and water depth of the sample site (where
recorded). Data were extracted on the mean %OC within
each sample; however, when available, data on the %OC in
different depth-layer sub-samples through a single core sam-
ple up to 50 cm were also recorded. Data were extracted from
data tables or Supplement databases when available; other-
wise, the PlotDigitizer online application was used to extract
data from graphical products.

In addition to data collated through the structured
searches, %OC data were also extracted from PANGAEA
– a global data repository for geographic Earth system data
(PANGAEA®, 2022). A data search across all the topics was
conducted on 25 October 2022 using the same search terms
as for the structured search, except for removal of the term
“Canad*”. The geographic extent of the results was instead
delineated using the spatial tool within PANGAEA which
allows results to be filtered by the geographic coordinates
of a square or rectangular extent. Overall, this led to a to-
tal of 1489 potential datasets. All relevant data within these
datasets were exported using the Data Warehouse Download
tool within PANGAEA. Based on expert knowledge, two ad-
ditional PANGAEA datasets were added to the output from
published global %OC data syntheses (Atwood et al., 2020;
Seiter et al., 2004). Lastly, where the date of the sample
was not recorded, the sampling year was manually added
by further exploring the metadata or cited studies. To align

https://doi.org/10.5194/essd-16-2165-2024 Earth Syst. Sci. Data, 16, 2165–2195, 2024



2172 G. Epstein et al.: Canada’s seabed sediment carbon stocks

the PANGAEA data with the systematic review data, PAN-
GAEA data points were excluded if (1) they lacked data on
%OC, (2) if they lacked metadata on the depth of a sam-
ple within the sediment, (3) if the sample originated from
greater than 50 cm below the sediment surface, or (4) if meta-
data on the elevation or water depth indicated sampling above
the sub-tidal zone. Additionally, metadata within PANGAEA
were coalesced where necessary (due to different names be-
ing given to the same data type) and mean values of %OC
taken if replicates were measured within a single sub-sample.

All organic carbon data were converted to spatial point
data transformed to the unified equal-area CRS and masked
by the predictor variable’s maximum model area to leave
only overlapping data. Additionally, values were only re-
tained from the sampling year 1959 and onwards. The ex-
tra year was included when compared with the mud content
data because there were some wide-scale surveys undertaken
across the Labrador Sea in 1959, which was lacking from
any additional %OC datasets. While this large temporal ex-
tent may add uncertainty in relation to the quality and unifor-
mity of the response data, similar extents have been used by
previous global mapping studies (Atwood et al., 2020; Lee
et al., 2019; Seiter et al., 2004), and 72 % of the %OC data
within this study were sampled after 1980 and 55 % after
2000. The larger temporal extent also allows for the inclu-
sion of a higher frequency and a wider spatial extent of data,
thereby potentially improving the robustness of our spatial
predictive models. In total, our %OC dataset contained 2518
point samples (Fig. B2) and 3308 sub-samples across differ-
ent depth layers within cores.

2.3.2 Organic carbon data processing

Due to commonly adopted uneven sampling distributions
within single core samples (i.e. more sub-samples towards
the top of the core), where sub-sample data were present in
the %OC at different depth layers, these were converted to
weighted cumulative means assuming a linear distribution
between sub-samples. Additionally, there was large variation
in the maximum sediment depth of point samples, ranging
from %OC measures from only the top 1 cm of sediment to
values up to the chosen data extraction limit of 50 cm deep.
We chose to standardise all samples to 30 cm depth as only
6 % of the point samples covered sediment depths below this
layer and because 30 cm is a commonly suggested carbon
stock accounting depth for terrestrial soil and marine sedi-
ment habitats in both carbon-accrediting methodologies and
greenhouse gas inventories (VERRA, 2020; IPCC, 2019).

To estimate the cumulative mean of %OC at 30 cm for all
the individual point samples, we created a transfer function
using a generalised additive mixed-model (GAMM) smooth-
ing spline. It is generally expected that the %OC in ma-
rine sediments will decrease with depth within the seafloor
(Middelburg, 2018); we used the collated data above to ap-
proximate a mean trend for this study. Firstly, only those

data that contained at least five sub-sampled depth lay-
ers were retained for modelling, as fitting distributions to
those with fewer points would likely be invalid. This left
183 unique samples with 2640 weighted cumulative mean
sub-samples for model construction. Cumulative mean %OC
data were arcsin-transformed (arcsin{

√
[%OC/100]}, a com-

monly adopted transformation for percentage data) and a
simple GAMM applied with sub-sample sediment depth as
the fixed factor modelled with a cubic regression spline and
a sample ID as the random factor. The GAMM was fitted
using the mgcv package, a scaled t-distribution family was
used for heavy-tailed Gaussian-like data, the number of ba-
sis dimensions was set to 20, and smoothing parameter es-
timation was conducted by restricted maximum likelihood
(REML) (Wood et al., 2016). Model validation was carried
out using visual assessment of diagnostic plots of residuals
as well as observed vs. fitted values. The significance of the
sampling depth smoothing spline was assessed by an analy-
sis of variance (ANOVA) with a chi-squared test comparing
the full GAMM to a null GAMM containing only the ran-
dom factor and the intercept (see Appendix C for the results).
The difference between the estimated deviances explained in
the full and null models was also used to approximate the
variance explained by the fixed and random factors. To cre-
ate a transfer function, the cumulative %OC was predicted
from the mean fixed effects of the GAMM at sediment depths
from 0 to 30 cm at 0.1 cm intervals. The predictions were
then back-transformed to percentage data, and the cumula-
tive mean %OC at each depth was converted to an inverse
proportion of the mean across 30 cm. Overall, this gave an
estimated proportional conversion factor from the cumulative
mean at any given depth to an expected mean across 30 cm
(Appendix C).

All point-sample data from PANGAEA and the system-
atic review were combined, corrected to weighted cumula-
tive means where sub-samples were present, checked for du-
plication, and unified to a mean %OC value of the top 30 cm
of sediment using the above transfer function. One outlier
was removed from the dataset as it was reported to have
a carbon content twice that of any other sample within the
dataset. Finally, for further analyses, %OC data were arcsin-
transformed due to a highly right-skewed distribution and its
application within similar modelling exercises (Smeaton et
al., 2021; Diesing et al., 2017).

2.4 Final model domain selection

After visual assessment of the coverage of both the mud con-
tent and %OC data, the final model domain was limited to
a water depth of 2500 m. This depth limit (as delineated by
the bathymetry predictor layer) encompassed 99.95 % of the
mud content point data (Fig. B1) and 99.3 % of the %OC data
(Fig. B2). The predictor layer raster stack was filtered with
all cells deeper than 2500 m excluded from the model do-
main. This final model domain covers 4 489 235 km2, which
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is 78.4 % of the EEZ or 92.6 % of the seafloor area above
2500 m (Fig. 1).

2.5 Random forest modelling

For predictive mapping, we adopted random forest machine
learning techniques due to their flexibility regarding viola-
tions of traditional statistical assumptions, ability to handle a
range of data types and predictor variables and elucidate both
drivers of model response and predictions of uncertainty, as
well as their successful application in previous similar mod-
elling tasks (Diesing et al., 2017, 2021; Pace et al., 2021;
Atwood et al., 2020; Wilson et al., 2018). Mud content and
%OC were both modelled using the following framework.
Firstly, each response variable was overlain onto the predic-
tor variable grid and the mean values were taken if more
than one data point fell within a single raster cell. All pre-
dictor variable data were then extracted for each response
dataset; however, the three biological and biochemical pre-
dictor variables (primary production, chlorophyll concentra-
tion and dissolved oxygen) were only used within the %OC
model as they are not expected to drive variation in physi-
cal sediment properties (Restreppo et al., 2021; Gregr et al.,
2021; Graw et al., 2021; Mitchell et al., 2019).

Contemporary research in spatial machine learning tech-
niques has highlighted that robust spatial cross-validation
(CV) strategies and predictor variable selection processes
are essential for calculating valid performance metrics, lim-
iting overfitting and constructing reliable spatial predic-
tions (Zhang et al., 2023; Ludwig et al., 2023; Meyer and
Pebesma, 2022; Meyer et al., 2019). Details of the methods
used to ensure appropriate cross-validation design and fea-
ture selection are discussed in Appendix A5. For both re-
sponse variables, following identification of an appropriate
35-fold spatial CV structure, a single fold was held back as
testing data, with all other data retained for model training.
To ensure an absence of duplication between the training and
testing data, 34 spatial CV folds were reconstructed on the
training data (i.e. all training data assigned to 1 of 34 val-
idation sets). Using these CV folds, the CAST.ffs function
(Meyer et al., 2023) was then used to run forward predictor
variable selection processes with appropriate spatial consid-
erations (see Appendix A5 for further information).

Following variable selection, hyperparameter tuning was
conducted on the hyperparameters mtry (the number of vari-
ables to randomly sample as candidates at each split) and
min_n (the number of observations needed to keep splitting
nodes), with the trees hyperparameter (the number of random
forest trees to construct and take mean predictions across) set
to 1000 (Probst et al., 2019). Eleven potential combinations
of hyperparameters were selected using a semi-random Latin
hypercube grid (Kuhn and Silge, 2023; Kuhn and Wickham,
2020). The tuning process fitted separate models across all
the CV folds and hyperparameter combinations (i.e. 34 CV
folds multiplied by 11 hyperparameter options gives a total

of 374 models) (Kuhn and Silge, 2023; Kuhn and Wick-
ham, 2020). The performance of each of the 11 hyperpa-
rameter combinations was assessed by calculating the root
mean squared error (RMSE) in predictions of the validation
data across all the CV folds, with the optimal hyperparameter
combination selected as that with the lowest RMSE (Meyer
et al., 2019, 2023). After selection of the best-performing hy-
perparameter combination, a single last-fit model was con-
structed on the entire training set and evaluated on the held-
back test set (Kuhn and Silge, 2023; Kuhn and Wickham,
2020), with the absence of overfitting determined by the
RMSE and R2 of the last-fit model falling within the range
of those found across CV folds with optimal hyperparame-
ters. The final model performance metrics (RMSE and R2)
were then calculated using all predictions of validation data
from CV folds (with optimal hyperparameters) and using
predictions of the testing data from the last-fit model (Meyer
et al., 2019, 2023). Predicted values were then calculated
across the entire model domain using the last-fit model and
the predictor variable raster stack (Kuhn and Silge, 2023;
Kuhn and Wickham, 2020), and cell-specific estimation of
uncertainty was calculated using the standard error in out-
of-bag predictions using an infinitesimal jackknife for bag-
ging (Roy and Larocque, 2020; Wager et al., 2014). Due to
computational restraints when calculating predictions across
the entire model domain (which contains 112 230 871 cells),
the predictor variable raster stack was split into 150 non-
overlapping partitions by random sampling and both predic-
tion and standard error estimates made serially on each par-
tition. All the predictions were then merged to create a raster
layer covering the entire model domain (although edge ef-
fects were not expected between partitions, random sampling
without replacement across the entire domain was chosen to
ensure its absence).

A cell-specific approximation of the upper and lower
bounds of the 95 % confidence interval (CI) was calculated
by adding or subtracting the cell-specific standard error es-
timates, each multiplied by 1.96, from the mean predictions
and then back-transformed where needed (Kuhn and Wick-
ham, 2020; Wager et al., 2014). After calculation, CI values
were corrected where necessary – being bounded by 0 and
100. The resulting three raster layers from the mud content
model were also used as available additional predictor vari-
ables when constructing the random forest models for %OC
(Fig. 2). Although this gives the potential for data leakage if
mud content and %OC data were from the same samples, we
found only 31 occurrences (1.3 % of the OC samples) where
direct spatial overlap occurred, and therefore we do not con-
sider significant data leakage to be present and no impact
on variable importance or model performance calculations
will be seen. Finally, a measure of relative predictor vari-
able importance was calculated by fitting an additional single
random forest model on all training data using optimal hy-
perparameters, and the predictor importance was calculated
on out-of-bag data through permutation of predictor variable
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Figure 2. Study workflow diagram. Outline of the structure and
linkages within the proceeding Methods and Results sections.
Light-blue shapes indicate input data, white ovals indicate data pro-
cesses, dark shapes indicate output data, rectangles indicate raster
data, and circles indicate point data. OC: organic carbon; DBD: dry
bulk density.

values (for further details, see Kuhn and Silge, 2023; Wright
et al., 2016). Accumulated local effect (ALE) plots for the
last-fit model were produced for the six predictor variables
with highest importance in each model using the iml pack-
age (Molnar et al., 2018) to give a visual representation of the
average effect of predictors on model prediction outcomes.

2.6 Estimating sediment dry bulk density

An estimate for the dry bulk density of the sediment (ρD
– the mass of dried sediment per unit volume within the
seafloor; g cm−3) was constructed across the model domain
based on the predictions of mud content from the random
forest model (Fig. 2). We identified three published func-
tions which describe the relationship between mud content
and porosity (8; the proportion of sediment volume which
is water) in seabed sediments. The following equations are
respectively from Jenkins (2005), Diesing et al. (2017) and
Pace et al. (2021).

8= 0.3805 ·mud+ 0.42071 (2)
8= 0.4013 ·mud+ 0.4265 (3)

8= 100.138·log10(mud)−0.486 (4)

Due to each of these equations being approximations of the
relationship between mud content and 8, we chose to take
the mean response. In all the equations, mud represents the
predicted mean mud content values as calculated above, each
expressed as a decimal proportion. For Eq. (4), mud content
was rounded up to the nearest 0.01 as lower values give unre-
alistic porosity estimates. Sediment porosity can then be con-
verted to an estimate of dry bulk density using the following
equation:

ρD = ρS(1− 8), (5)

where ρS is the grain density of seabed sediments (g cm−3),
which was set at the frequently used constant approximation
of 2.65 (Diesing et al., 2017, 2021; e.g. Pace et al., 2021;
Lee et al., 2019; Wilson et al., 2018; Kuzyk et al., 2017).
Although this standard approximation of grain density is not
ideal, the variation under different environmental settings is
generally found to be small when compared with differences
in %OC and porosity. Therefore, the values of grain density
are not expected to strongly drive variation in organic carbon
density (Atwood et al., 2020; Lee et al., 2019; Middelburg,
2019; Martin et al., 2015; Berner, 1982).

To incorporate uncertainty from our mud content predic-
tions, estimates of dry bulk density were also calculated from
the cell-specific predictions of the lower and upper bounds of
the 95 % CI of mud content. We used these derived lower and
upper bounds of dry bulk density estimates as best available
approximations of uncertainty around the dry bulk density
mean estimate values. Equivalent approaches to estimating
uncertainty have been used in other seabed sediment carbon
mapping studies (e.g. Diesing et al., 2017, 2023; Lee et al.,
2019).

2.7 Estimating organic carbon standing stock

The organic carbon density (g cm−3) is calculated by mul-
tiplying the %OC (expressed as a decimal proportion) by
the sediment dry bulk density (Fig. 2). For the final calcula-
tions, the respective means and upper and lower uncertainty
bounds were multiplied together to incorporate uncertainty
from both components. These compound uncertainties were
used as the best available approximations of the lower and
upper bounds of uncertainty around the estimates of mean or-
ganic carbon density (akin to Diesing et al., 2017, 2023; Lee
et al., 2019). To create a more meaningful response value, or-
ganic carbon density was converted (kg m−3; multiplied by
1000). Finally, the organic carbon stock in each mapped cell
can be calculated by multiplying the organic carbon density
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by the reference sediment depth of this study (0.3 m) and the
cell area (40 000 m2) and converted to metric tonnes (divided
by 1000). Overall, this allows estimates to be calculated for
the total values of organic carbon stock across different parts
of the model domain.

2.8 Rock substrate distribution case studies

The method followed in this study is similar to that used for
many similar seabed sediment predictive mapping exercises
in that it uses data only from sediment grab and core sam-
ples to build predictive maps across the model domain (Re-
streppo et al., 2021; Graw et al., 2021; Diesing et al., 2017,
2021; LaRowe et al., 2020a; Atwood et al., 2020; Lee et al.,
2019; Mitchell et al., 2019; Wilson et al., 2018; Stephens and
Diesing, 2015). One major limitation with this modelling ap-
proach is that areas of bedrock, which would have zero val-
ues for all sediment response variables, will not be recorded
in these datasets. Therefore, the underrepresentation of zero
values in the response data could lead to an overestimation
of organic carbon standing stocks as zero values are unlikely
to be predicted from model outputs.

In the context of this study, information regarding the dis-
tribution of bedrock is lacking for many regions. We there-
fore use two regional case studies from the Pacific British
Columbian EEZ and the Atlantic Scotian Shelf and slope
where recent publications have made estimated maps of the
distribution of rock substrates (Philibert et al., 2022; Gregr
et al., 2021). Each of these products was overlain on the fi-
nal spatial predictions of sediment carbon densities and all
cells set to zero where rock substrates were predicted. The
proportional effect on the mean, upper and lower estimates
of carbon stock was then calculated in each bioregion.

3 Results

3.1 Mud content predictive mapping

Of the 25 predictor variables available for mud content ran-
dom forest modelling, 13 were selected in the optimal model
(Fig. 3). The mean orbital velocity of waves at the seafloor
and the mass of suspended particulate matter at the surface
were the variables with the highest importance (Fig. 3). Other
variables with relatively high importance for predicting mud
content included the exposure setting, ice thickness, distance
to rivers, bathymetry and benthic position indices (Fig. 3).
A higher mud content was generally predicted in areas of
low wave velocity, low exposure and closeness to but not di-
rectly adjacent to river mouths, with the effect of SPM and
ice thickness less distinct, likely due to more complex inter-
active effects (Fig. 4).

Areas with sediments dominated by mud (> 75 %) were
predicted across the basins of many of the Pacific fjords, in-
lets and estuaries and within the southern Salish Sea (Fig. 5).
In the Arctic, mud-dominated areas included large parts of

Figure 3. Predictor variable importance from random forest mod-
els of mud content in marine sub-tidal sediments. The y axis is a
unitless relative variable importance score for each model. Aster-
isks indicate the two initial predictors which were selected based
on variable importance, with all the other predictor variables se-
lected using a forward-selection process (see Appendix A5 for fur-
ther details). WaveVel: orbital wave velocity at the seafloor, SPM:
suspended particulate matter within the water column, BPI: benthic
position index, DistRiver: distance to the nearest river, IceThick: sea
ice thickness, Bathy: bathymetry, VRM: vector ruggedness mea-
sure, CurrVel: current velocity at the seafloor.

the Canadian western Arctic as well as Hudson Bay. In the
Atlantic, the Laurentian Channel and deeper parts of the Sco-
tian Shelf contained particularly high mud fractions (Fig. 5).
Across the model domain, sediment in deeper areas on the
continental slope was also highly dominated by mud (Fig. 5).
Using robust spatial cross-validation, the model was esti-
mated to have an RMSE of 24.4 % and R2 of 0.60. The
cell-specific upper and lower 95 % CI bounds are shown in
Fig. E1. On average, the upper CI bounds were 28 % larger
than the mean and the lower CI bounds 20 % less.

3.2 Organic carbon content predictive mapping

Eleven predictor variables were selected in the optimal %OC
model (Fig. 6). The variables with the highest importance
in predicting %OC were the mud content layers constructed
above (specifically the mean and the lower bound), with all
other predictors having less than half the relative importance
of the mean mud predictions (Fig. 6). On average, organic
carbon content increased with predicted mud content and was
generally higher in areas with low SPM concentrations and
low exposure settings, close to but not directly adjacent to
rivers and at high water temperatures (Fig. 7).

The predictions of %OC ranged from 3× 10−5 to 5.6 %,
with an overall mean of 0.8± 0.3 % (±SD). Areas with the
highest predicted %OC (> 3 %) were restricted to parts of
the Pacific West Coast fjords and channels and small parts of
the inlets and bays on the eastern coast of Nova Scotia and
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Figure 4. Accumulated local effect (ALE) plots for the six predictor variables with the highest importance in the mud content random forest
model. ALE (distributions drawn with lines) gives a visual representation of the average effect of the predictor variable on the response but
does not indicate the influence of multi-way interactions which are inherent in random forest models. Rug plots (dashed marks at the bottom)
indicate the distribution of each variable within the training dataset.

Figure 5. Predictive mapping of mud content (%) in sub-tidal marine sediments across the Canadian continental margin. The main plot
shows the Arctic and Atlantic regions with the Pacific region inset. The 95 % confidence interval bounds around the predicted means are
shown in Fig. E1. Labels indicating the locations of different areas mentioned within the text are shown in Fig. B3. Country outlines from
World Bank Official Boundaries, available at https://datacatalog.worldbank.org/search/dataset/0038272 (last access: 16 May 2023).

around Passamaquoddy Bay in the Bay of Fundy (Fig. 8).
High concentrations (i.e. > 1 %) were more widespread
across these areas and covered much of the Beaufort Sea,
western Baffin Bay and Foxe Basin in the Arctic, south-
ern and central Hudson Bay, the Laurentian Channel, coastal

northern Newfoundland and the central Scotian Shelf in the
Atlantic, as well as the Salish Sea and deeper areas to the
south of the British Colombian Pacific continental margin
(Fig. 8). The lowest %OC was predicted across shallower
parts of the central Pacific shelf and near coastal areas west
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Figure 6. Predictor variable importance from random forest mod-
els for the organic carbon content in marine sub-tidal sediments.
The y axis is a unitless relative variable importance score. Aster-
isks indicate the two initial predictors which were selected based
on variable importance, with all other predictor variables selected
using a forward-selection process (see Appendix A5 for further de-
tails). Mud_min: lower bound of 95 % CI for mud content, SPM:
suspended particulate matter within the water column, Temp: tem-
perature, DistRiver: distance to the nearest river, IceConc: sea ice
concentration, DO: dissolved oxygen at the seafloor, IceThick: sea
ice thickness, CurrVel: current velocity at the seafloor.

of Vancouver Island (Fig. 8). Cross-validation estimated an
R2 for the model of 0.58 and an RMSE of 0.09 arcsin{%OC}.
Cell-specific upper and lower 95 % CI bounds are shown in
Fig. E2. On average, the upper CI bounds were 42 % larger
than the mean prediction and the lower CI bounds 33 % less
than the mean prediction.

3.3 Dry bulk density estimation

The dry bulk density of sediments was estimated using
the predicted values of mud content from our random for-
est model and previously published functions for conver-
sions to porosity and dry bulk density (Fig. 2). Estimated
values ranged from 0.67 to 1.61 g cm−3 with a mean of
1.04± 0.21 g cm−3 (±SD). As expected from its deriva-
tion, the spatial distribution of the dry bulk density values
was very similar to the mud content values predicted above
(Fig. 5). That is, the lowest dry bulk density was estimated in
mud-dominated areas (Fig. 9). Cell-specific upper and lower
uncertainty bounds are shown in Fig. E3. On average, these
bounds were 6.2 % larger and 6.0 % lower than the cell-
specific mean estimate.

3.4 Estimated organic carbon density and standing
stock

From combining predictions of dry bulk density and organic
carbon content, organic carbon density could be estimated

across the Canadian continental margin (Fig. 2). Estimated
values ranged from 5× 10−4 to 58.4 kg m−3 with a mean
of 8.1± 2.8 kg m−3 (±SD). Spatial patterns in organic car-
bon density (Fig. 10) were similar to those found for organic
carbon content (Fig. 8). Areas with the highest carbon den-
sity (> 25 kg m−3) were restricted to small areas within near-
shore zones, including inlets and fjords of British Columbia
(Pacific), as well as enclosed near-shore areas of the Atlantic
East Coast (Fig. 10). High carbon densities (> 15 kg m−3)
were predicted to occur across wide parts of these areas as
well as further offshore in parts of the Laurentian Channel
and central Scotian Shelf and at the edge of the continental
slope off the west of Vancouver Island (Fig. 10). In the Arc-
tic, areas with relatively high carbon (> 10 kg m−3) were pre-
dicted across many near-shore areas as well as across large
parts of the Beaufort Shelf, Foxe Basin, James Bay and Kane
Basin (Fig. 10). Cell-specific upper and lower uncertainty
bounds are shown in Fig. E4. On average, the upper bounds
were 50 % higher than the mean prediction and the lower
bounds 37 % less than their means.

Using a standardised sediment depth of 30 cm, the total
standing stock of organic carbon in surficial sediments across
the model domain is estimated at 10.9 Gt with uncertainty
bounds of 7.0–16.0 Gt. Between bioregions, total stock was
predominantly related to total areal extent, for example with
Hudson Bay having the largest carbon stock and the largest
area (Table 2). The Strait of Georgia and Southern Shelf
bioregions of the Pacific had the lowest total standing stocks
due to their small extent. However, by unit area, these regions
contained the highest organic carbon stocks, along with the
Gulf of St. Lawrence (Table 2).

3.5 Rock substrate distribution case studies

As the predictive maps produced in this study rely on phys-
ical sediment samples alone, they are unlikely to produce
valid estimates for areas of bedrock – i.e. estimates of zero
sediment carbon density where bedrock is located. On the
Scotian Shelf (bioregion 12), correcting our predictive maps
with a predicted bedrock distribution map (Fig. F1) reduces
the total organic carbon stock estimates in this region by be-
tween 7.7 % and 7.8 %, leading to a value of 0.59 Gt (0.37–
0.90 Gt). For the Pacific British Columbian marine region
(bioregions 1–4), assigning zero values to areas covered by a
predicted bedrock distribution map (Fig. F2) would reduce
our estimates by 9.1 %–9.7 % to a total of 0.46 Gt (0.29–
0.71 Gt) of organic carbon.

4 Code and data availability

All the mapped products as shown in Figs. 5, 8, 9 and 10 have
been made available as georeferenced TIFF files in the Bore-
alis data repository at https://doi.org/10.5683/SP3/ICHVVA
(Epstein et al., 2024). This includes the mean predictions
as well as the cell-specific uncertainty bounds as shown in
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Figure 7. ALE plots for the six predictor variables with highest importance in the organic carbon (OC) content random forest model. ALE
(distributions drawn with lines) gives a visual representation of the average effect of the predictor variable on the response but does not
indicate the influence of multi-way interactions which are inherent to random forest models. Rug plots (dashed marks at the bottom) indicate
the distribution of each variable within the training dataset.

Figure 8. Predictive mapping of organic carbon content (%) in sub-tidal marine sediments across the Canadian continental margin. The main
plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous variable is shown displayed in discrete colour bands
to improve visualisation of highly right-skewed data. The 95 % confidence interval bounds around the predicted means are shown in Fig. E2.
Labels indicating the locations of different areas mentioned within the text are shown in Fig. B3. Country outlines from World Bank Official
Boundaries, available at https://datacatalog.worldbank.org/search/dataset/0038272 (last access: 16 May 2023).
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Figure 9. Estimates of sediment dry bulk density (g cm−3) across the Canadian continental margin. The main plot shows the Arctic and
Atlantic regions with the Pacific region inset. The estimated bounds of uncertainty around the predicted means are shown in Fig. E3. Labels
indicating the locations of the different areas mentioned within the text are shown in Fig. B3. Country outlines from World Bank Official
Boundaries, available at https://datacatalog.worldbank.org/search/dataset/0038272 (last access: 16 May 2023).

Figure 10. Estimates of organic carbon density (kg m−3) across the Canadian continental margin. The main plot shows the Arctic and
Atlantic regions with the Pacific region inset. The continuous variable is shown in discrete colour bands to improve visualisation of highly
right-skewed data. The estimated bounds of uncertainty around the predicted means are shown in Fig. E4. Labels indicating the locations
of the different areas mentioned within the text are shown in Fig. B3. Country outlines from World Bank Official Boundaries, available at
https://datacatalog.worldbank.org/search/dataset/0038272 (last access: 16 May 2023).
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Table 2. Summary of estimated mean total organic carbon stocks in surficial seabed sediments of different bioregions across the Canadian
continental margin. Organic carbon standing stocks are estimated for the top 30 cm of seabed sediments. For delineation of the different
bioregions, see the Supplement.

Bioregion Model domain OC stock Stock per unit
extent (km2) (Gt) area (kt km2)

(1) Offshore Pacific 53 598 0.15 2.75
(2) Northern Shelf, BC 96 373 0.23 2.34
(3) Southern Shelf, BC 28 313 0.10 3.38
(4) Strait of Georgia 8664 0.04 4.94
(5) Western Arctic 526 309 1.09 2.06
(6) Arctic Basin 250 178 0.42 1.69
(7) Arctic Archipelago 243 425 0.47 1.92
(8) Eastern Arctic 757 226 1.82 2.40
(9) Hudson Bay 1 234 257 3.08 2.49
(10) NL shelves 820 462 2.04 2.49
(11) Gulf of St. Lawrence 235 541 0.80 3.38
(12) Scotian Shelf 234 888 0.65 2.77

Notes: OC: organic carbon; NL: Newfoundland–Labrador.

Appendix E. The repository also contains all data collated
within the systematic data review of organic carbon content
and the georeferenced TIFF files from the rock distribution
case studies (Appendix F). Additionally, all the associated
code used for data manipulations, model building and pre-
dictive mapping can be found in the above repository.

5 Discussion

Using best available data, we have produced the first na-
tional assessment of organic carbon in surficial seabed sed-
iments across the Canadian continental margin, estimating
the standing stock in the top 30 cm to be 10.9 Gt (7.0–
16.0 Gt). Although comparisons with previous global stud-
ies are challenging due to differences in sediment reference
depths, mapping resolutions and total spatial coverage, our
estimate falls within a similar range to those previously pub-
lished, e.g. 2.2 Gt in the top 5 cm (Lee et al., 2019) and
48 Gt in the top metre (Atwood et al., 2020) of the Cana-
dian EEZ. In contrast to these global studies, the national
approach taken here allows for a more complete data syn-
thesis, a finer spatial resolution, larger spatial coverage of
the Canadian continental margin and spatially defined esti-
mates of uncertainty. Similarly to other national and regional
mapping studies (Smeaton et al., 2021; Diesing et al., 2017,
2021), areas of high organic carbon stocks were predomi-
nantly predicted to occur in coastal fjords, inlets, estuaries,
enclosed bays and sheltered basins as well as deeper chan-
nels and troughs (Fig. 10). To put our estimated organic car-
bon standing stock into context, 10.9 Gt equates to 52 % of
the organic carbon estimated to be stored in all Canadian ter-
restrial plant live biomass and detritus (both above and be-
low ground) and 9.8 % of soil organic carbon to 30 cm across
Canada (Sothe et al., 2022).

5.1 Model interpretation and uncertainties

The two key components of the carbon stock estimates in
this study are the predictive maps for mud content and or-
ganic carbon content, which were estimated to have map ac-
curacies of 60 % and 58 % respectively (R2 0.60 and 0.58).
While these values may seem relatively low when compared
with some other related studies (Diesing et al., 2017, 2021;
Atwood et al., 2020; Mitchell et al., 2019), the use of ro-
bust, spatial cross-validation to calculate model evaluation
metrics (as we did herein) has been shown to produce signif-
icantly more conservative estimates of map accuracy when
compared with frequently used random cross-validation ap-
proaches (Ludwig et al., 2023; Meyer et al., 2019) such
as those used in both global seabed carbon stock studies
discussed above (Atwood et al., 2020; Lee et al., 2019).
Within this study, we also calculated cell-specific uncertainty
bounds. While there are many ways to calculate model un-
certainty, thereby making comparisons between studies chal-
lenging, the uncertainty in carbon density calculated here
(37 %–50 % either side of the mean) is close to those found
in similar regional (Diesing et al., 2021; 58 %) and global
studies (Lee et al., 2019; 49 %), both of which predict car-
bon stocks at significantly coarser resolutions. Our bounds
for total standing stock (36 % lower and 47 % higher than
the mean) are also similar to the estimated bounds from the
recently published predictive models of Canadian terrestrial
vegetation and soil carbon (a 90 % confidence interval of
48 % either side of the mean) (Sothe et al., 2022).

Using two case studies from British Columbia and the
Scotian Shelf, we estimated that the distribution of rock sub-
strates could reduce our estimates of carbon stock by ap-
proximately 7.7 %–9.7 % (Figs. F1 and F2). As much of the
Canadian coastline is distant from significant infrastructure,
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extensive surveys of the seafloor are generally lacking, espe-
cially when compared with similar regional carbon mapping
studies in north-western Europe (e.g. Smeaton et al., 2021).
It is therefore unclear how representative these case studies
are of the entire Canadian EEZ. Improved data on the pres-
ence of bedrock across less-studied regions of the Canadian
Arctic, Hudson Bay, Gulf of St. Lawrence, Newfoundland
and Labrador may allow for the production of a predictive
map of bedrock across the Canadian EEZ which would sig-
nificantly improve the carbon estimates and spatial predictive
maps produced in this study.

Areas of uncertainty which could not be fully quantified
include the accuracy and precision of response data and pre-
dictor layers. The response data drive the model construc-
tion, and therefore sampling, processing or recording errors
can propagate into predictions. This is particularly relevant
given the large temporal extent of response data which was
required to gain sufficient coverage for this work (1959–
2019). This long duration may also add additional variation
from temporal differences between data, e.g. from differing
anthropogenic drivers of carbon storage and/or accumulation
(Keil, 2017). However, similar temporal extents have been
used in related studies (Atwood et al., 2020; Lee et al., 2019;
Seiter et al., 2004), and 72 % of the organic carbon data in
this study were sampled after 1980 and 55 % after 2000. In
the response data, assumptions and/or predictions were also
required regarding the distribution of mud and carbon across
sediment depths. While standardising for this factor is clearly
necessary, especially when using a wide variety of legacy
data, it does add additional uncertainty which would not be
present if wide-scale standardised sampling methods were
employed. The results from this study do however highlight
that, within the top 30 cm of sediment, the spatial location of
the sample is a far stronger driver of organic carbon content
than the sediment sampling depth (Table C1).

Most of the predictor variables used in this study are
also themselves modelled products that contain their own
inherent uncertainties and/or interpolations which cannot be
fully quantified here. Additionally, many predictors are con-
structed at spatial resolutions significantly coarser than those
used for modelling and prediction in this study. This meant
that predictor data had to be interpolated, with significant in-
herent assumptions regarding the variation and distribution
of the data. Although best available data were used in this
study, if predictor variables were available at higher native
resolutions, fewer assumptions would be necessary and sig-
nificant differences may be found in predictions as well as
their uncertainty and variability. Many of the predictor vari-
ables also have temporal components, and while the clima-
tological mean of a 12- to 14-year time span used in this
study is expected to produce variables representative of the
study region, they do not completely align with the temporal
extent of the response data, which could add further predic-
tion uncertainty. Finally, due to data availability, the uncer-
tainty bounds around our mean estimates of dry bulk density

and organic carbon density were approximated from the con-
structed 95 % CIs of mud content and %OC from the random
forest models. While these provide an appropriate measure
of uncertainty in our estimates in the context of this study,
if large empirical datasets became available for dry bulk and
organic carbon density, it would be preferable to construct
predictive models, mean estimates and uncertainty bounds
for these response variables directly.

5.2 Future directions and applications

Improvements could be made in future iterations of these
sediment carbon maps when additional response data be-
come available. The size of the organic carbon content
dataset was relatively small (2518 point samples) given the
size of the model domain, so new data could greatly im-
prove accuracy and reduce uncertainty in predictions. Ad-
ditionally, widespread empirical data on sediment dry bulk
density would reduce the assumptions needed to use approxi-
mate conversions from mud content, while a large geographi-
cally dispersed empirical dataset on seabed sediment organic
carbon density (i.e. where OC content and dry bulk density
are measured directly in each physical sample) would reduce
assumptions even further, with the potential to construct a
single predictive map for this response alone (Diesing et al.,
2021). There are also improvements to be made with the de-
velopment of higher-resolution or more accurate predictor
layers. This would be particularly relevant for those variables
with coarse resolutions and those which were seen to have
the highest importance in our models or related seabed sedi-
ment mapping studies (e.g. Gregr et al., 2021; Diesing et al.,
2017, 2021; Mitchell et al., 2019), i.e. wave velocities, sus-
pended particulate matter, exposure, current velocities and
oxygen concentrations. Further validation and refinements
could also be supported by numerical biogeochemical mod-
elling products where the organic carbon densities are math-
ematically estimated based on oceanographic, climatological
and benthic conditions, including the potential to incorpo-
rate predictions in different future climate scenarios (Ani and
Robson, 2021).

The organic carbon predictive mapping product generated
here could have many future applications. Regionalisation
and prioritisation processes could identify key areas of car-
bon storage for further research and possible protections (Ep-
stein and Roberts, 2022, 2023; Diesing et al., 2021). There is
also potential to combine these mapped products with spatial
data on human activities occurring on the seafloor to con-
sider potential management implications, such as controlling
the levels of impactful industries (e.g. mobile bottom fish-
ing, mineral extraction or energy generation) in areas with
high organic carbon (Clare et al., 2023; Epstein and Roberts,
2022). The mud content predictive maps may also have wider
applications for marine planning, being a strong driver of
the biological habitat type and sensitivity. Overall, these data
have wide-scale relevance across the marine ecology, geol-
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ogy and environmental management disciplines. However,
the use of these products should always consider the dis-
cussed uncertainties and quantified uncertainty bounds of
predictions. As with all large-scale mapping exercises, con-
tinued empirical data collection is needed for improved ac-
curacy of mapping seabed carbon stocks across Canada.

Appendix A: Supplementary methods

A1 Analysis software

Analyses were primarily undertaken in R 4.2.2 (R Core
Team, 2022) and Rstudio 2022.12.0.353 (Posit Team, 2022),
with some additional data manipulation and spatial plotting
in QGIS (QGIS.org, 2021) and Python (Van Rossum and
Drake, 2009). Within R, raster data were handled using the
terra package (Hijmans, 2022), spatial vector data used the
sf package (Pebesma, 2018), netCDF data used the stars
(Pebesma and Bivan, 2023) and tidync (Sumner, 2022) pack-
ages, data frames used the dplyr package (Wickham et al.,
2019), and vector data used base R (R Core Team, 2022).
Random forest modelling was primarily dependent on the
ranger package (Wright and Ziegler, 2017). However, mod-
els were constructed and tuned using the tidymodels pack-
age (Kuhn and Wickham, 2020), with cross-validation and
predictor variable selection using the CAST (Meyer et al.,
2023) and caret (Kuhn, 2008) packages. Plotting utilised the
above packages as well as ggplot2 (Wickham et al., 2019)
and patchwork (Pedersen, 2022), while parallel processing
used the doParallel package (Microsoft Corporation and We-
ston, 2022).

A2 Bathymetry layer construction

To define the maximum potential spatial coverage of this
study, best available bathymetric datasets were combined
across the Canadian EEZ (Table 1). Firstly, three DEM raster
layers covering different extents of the Canadian EEZ were
each filtered to contain only those elevations of less than or
equal to 0 m. Where necessary, data were then aggregated
(averaged) or disaggregated (split) to a resolution of approxi-
mately 200 m, and all the layers were projected onto a unified
200 m× 200 m equal-area grid CRS (EPSG:3573 – WGS 84
– North Pole Lambert Azimuthal Equal Area Canada). Re-
projection was necessary as all three DEMs were in different
coordinate systems, including some already being projected.
The 200 m resolution was chosen as it is the median native
resolution of the three DEMs while also being considered
towards the upper limit of what may be computationally pos-
sible within the scope of this study. After reprojection, the
three layers were overlain, with the region-specific data given
priority over the global data where present. Finally, the sea-
ward boundaries were delineated by the outer extent of the
Canadian EEZ (Flanders Marine Institute, 2019).

A3 Details of ocean circulation models

ANHA12 is a regional configuration of the NEMO ocean and
sea ice model (Madec et al., 1998) created at the University
of Alberta, covering the Arctic and Northern Hemisphere At-
lantic at 5 d temporal resolution, a curvilinear 1/12 degree
horizontal resolution ranging from 1.93 km in the Arctic to
9.3 km at the Equator, and 50 vertical levels (Hu et al., 2019).
The British Columbian continental margin (BCCM) circula-
tion model created by Fisheries and Oceans Canada (DFO)
covers the entire Canadian Pacific coast and extends approx-
imately 400 km offshore. It has a uniform horizontal resolu-
tion of 3 km, 42 vertical levels and a 3 d temporal resolution
(Peña et al., 2019; Masson and Fine, 2012). As the BCCM
model has higher uncertainty in near-shore and enclosed en-
vironments due to its relatively coarse resolution, data were
also extracted for the enclosed Salish Sea from the Salish Sea
Cast ERDDAP data server. Similarly to ANHA12, the Salish
Sea Cast is a configuration of the NEMO circulation model
developed by a consortium of Canadian universities and gov-
ernment agencies and extends from Juan de Fuca Strait to
Puget Sound to Johnstone Strait at 500 m horizontal resolu-
tion, 40 vertical layers and hourly temporal resolution (Soon-
tiens and Allen, 2017; Soontiens et al., 2016). For further de-
tails on all these models, see the relevant cited references. It
should be noted that many of these ocean circulation models
contain high uncertainty in near-shore areas. However, they
are expected to be greatly improved when compared with
global circulation model products (Peña et al., 2019; Hu et
al., 2019; Soontiens and Allen, 2017), which are frequently
used in this sort of predictive mapping work (e.g. Atwood et
al., 2020; Lee et al., 2019; Assis et al., 2018).

A4 Sediment grain size data collation and processing
details

Sediment composition point data were extracted from two
sources. Firstly, all data were exported from the NRCan Ex-
pedition Database on 11 November 2022. This data reposi-
tory contains information related to marine and coastal field
surveys conducted by or on behalf of the Geological Survey
of Canada from the 1950s to the present, which deployed
sampling methods including piston cores and grab samples.
Data were also extracted from a recent synthesis of grain
size distribution measurements from the Canadian Pacific
seafloor (1951–2017), compiled by the Geological Survey
Of Canada and NRCan (Enkin, 2024). Although there are
some duplications between these two datasets, these are ac-
counted for in the proceeding pre-processing steps. In both
sources, grain size data are reported as the percentage con-
tent of mud (sometimes separated into silt and clay), sand
and gravel within each sample. Due to modern developments
in grain size analyses (e.g. laser diffraction), older samples
may have lower measurement accuracy; however, due to the
relatively coarse metric being used in this study (mud, sand
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or gravel) and the occurrence of a number of large-scale ge-
ological surveys occurring during the 1960s, we chose to re-
tain data from 1960 onwards. When the sampling year was
not recorded within the database, the date was inferred from
the expedition code or from expedition metadata. The sam-
pling method and depth of the sediment from which the sam-
ple or sub-sample originates are also predominantly recorded
within the database. Where sediment depth was absent, the
sampling method was noted as “grab” or “other”, and the
penetration depth was assumed to be 10 cm (a commonly
assumed penetration of standard sediment sampling devices
such as Van Veen grabs and Day grabs).

A5 Details on the construction and implementation of
spatial cross-validation and feature selection

For each response variable modelled in this study (mud con-
tent and %OC), the spatialsample package (Mahoney et al.,
2023) was used to construct a variety of spatial CV data-
fold structures, and the validity of each structure was visu-
ally assessed using the CAST.plot_geodist function (Meyer
et al., 2023). This function creates density plots of nearest-
neighbour distances (Euclidean) in multivariate predictor
space (using normalised variables) between response data
locations and a random sample of prediction locations and
between data inside and outside each CV fold (Ludwig et
al., 2023; Meyer et al., 2023; Meyer and Pebesma and Bi-
van, 2023). The suitability of a given CV structure to be rep-
resentative of estimating map accuracy can be determined
by visually assessing the density plots and finding the CV
distance curve being closely aligned with the density curve
of response data to prediction distances (see Appendix D;
Ludwig et al., 2023; Meyer and Pebesma, 2022). To ap-
proximate response-to-prediction distances, the sample size
number within plot_geodist was set to select 5000 random
samples across the model domain. Further, as the spatial
distribution of data is a key consideration to ensure robust
cross-validation (Ludwig et al., 2023; Meyer and Pebesma,
2022), for the plot_geodist calculations alone, the x and y
coordinates of each data point were included in addition to
those predictor variables listed in Table 1 and described in
Sect. 2.5.

For the mud content data, a spatial k-means clustering CV
structure was chosen as the response data had good cov-
erage of the model domain, contained a large number of
data points, and showed relatively strong spatial clustering
(Fig. B1). A range of options in the number of k-means clus-
ters were tested, with 35 being determined as the optimal
number and each cluster being assigned to its own CV fold
(Fig. D1). Through visual assessment of the density plots,
we identified that the k-means CV structure was somewhat
misaligned from response-to-prediction distances, with the
CV distances being overly conservative at including near-
distance comparisons (Fig. D1). We therefore used a par-
tially repeated CV strategy with a small number of randomly

selected data points added to the assessment set in each k-
means spatial CV fold (1 % of mud content data randomly
sampled at each fold without replacement) (Fig. D2). As the
%OC response dataset was relatively small and spatially dis-
persed (Fig. B2), we used a spatial block CV strategy in
place of the k-means clustering to avoid clusters containing
highly spatially dispersed data. We chose to use hexagonally
shaped blocks, random assignment of blocks to folds and
the same number of CV folds as for the mud content data
(v = 35) – both to maintain uniformity and because vary-
ing the fold number did not significantly influence the den-
sity plots. Instead, the diameter of the spatial blocks was al-
tered and an optimal block size of 100 km identified using
the plot_geodist function (Fig. D3).

The CAST.ffs function (Meyer et al., 2023) was used to
run a forward predictor variable selection process with ap-
propriate spatial considerations. The function fits a model
with all combinations of two-way predictors, selects the best
model based on a given metric, and then increases the num-
ber of predictors by 1, testing all the remaining variables.
This iteratively continues with the process stopping if none
of the tested variables increases the performance when com-
pared with the best previous model with n−1 predictors. The
function allows models to be fit separately on each spatial
CV fold (as defined above), with the overall performance of
each iteration based on model accuracy across all the CV
folds. This therefore incorporates appropriate spatial consid-
erations into the feature selection process. Due to the large
number of variables within this study and the relatively large
datasets, this process was very computationally expensive.
We therefore chose to adapt the function to initiate forward
variable selection after initial identification of the first two
predictor variables. These variables were identified by con-
structing a single random forest model with all training data
and predictor variables and the hyperparameters mtry (the
number of variables to randomly sample as candidates at
each split), min_n (the number of observations needed to
keep splitting nodes) and trees (the number of random for-
est trees to construct and take mean predictions across) set
to 2, 5 and 1000 respectively. Variable importance was esti-
mated on out-of-bag samples through permutation of predic-
tor variable values (Wright et al., 2016) and the two predictor
variables with the highest importance selected. The ffs func-
tion was then run starting with the two pre-selected variables
(see Figs. 3 and 6) and the performance of each iteration as-
sessed on the root mean squared error (RMSE) of predictions
across all the CV folds.
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Appendix B: Distribution of response data

Figure B1. Map showing the distribution of mud content samples across the model domain.

Figure B2. Map showing the distribution of carbon content samples across the model domain.
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Figure B3. Map indicating the locations of different areas which are mentioned within the text. The Canadian Pacific (blue), Arctic (grey)
and Atlantic (red) regions are shown with labelled locations overlain. BC: British Columbia; Passa’ Bay: Passamaquoddy Bay; NS: Nova
Scotia; NF: Newfoundland; SPMI: St. Pierre and Miquelon. The locations are for guidance only and do not represent the entire extent or
exact location of a given area. Country outlines are derived from World Bank Official Boundaries, available at https://datacatalog.worldbank.
org/search/dataset/0038272 (last access: 16 May 2023).

Appendix C: Organic carbon sediment depth
modelling results

There was a significant effect of sampling depth on the
organic carbon content in seabed sediments (χ2

= 1400.9,
p < 0.001). While sample ID explained most of the variation
between sub-sample carbon contents, the sampling depth was
also a significant factor (Table C1). Carbon content decreased
with increasing sampling depth (Fig. C1). The rate of the
carbon content decline generally decreased with increasing
depth into the sediment. However, uncertainty in this trend
increased within deeper sediment layers (Fig. C1).

The predicted mean effect of sediment depth on carbon
content was extracted from the model and converted to a
transfer function which states the expected ratio between
the carbon content across 30 cm compared with the cumu-
lative mean at any given sampling depth (Fig. C2). The ratio
ranged from 89.3 % when only measuring the sediment sur-
face to 93.7 % when measuring the carbon content across the
top 10 cm, and by 25 cm it was approaching equilibrium at
98.8 %.
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Table C1. Results from the generalised additive mixed model between the carbon content of marine sediments and the sampling depth. A
basic generalised additive mixed model with a scaled t distribution was constructed for carbon content in sediment sub-samples, with sample
ID as the random factor and sampling depth as the fixed factor.

Spline Type edf Res. df χ2 Deviance explained p

Sampling depth (cm) Cubic 4.28 5.36 2299 1.1 % < 0.001
ID Random 181.94 182.00 715 046 86.9 % < 0.001

Notes: edf: effective degrees of freedom. Res. df: residual degrees of freedom.

Figure C1. Regression splines indicating the effect of sediment sampling depth (a) and sample ID (b) on the organic carbon content in
seabed sediment sub-samples.

Figure C2. Transfer function for cumulative mean organic carbon (OC) content at 30 cm sediment depth. Using a generalised additive mixed
model, an estimated transfer function was constructed to standardise the cumulative mean carbon content at any given depth to an expected
value at 30 cm.
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Appendix D: Results from random forest
cross-validation structure selection

Figure D1. Multivariate nearest-neighbour distance density plot for mud content data with the optimal number of spatial k-means clusters
across cross-validation (CV) folds. The frequency of nearest-neighbour distances (x axis) is shown for sample-to-sample distance (red),
sample-to-prediction distance (green) and CV-fold analysis-to-assessment distance (blue). dist: multivariate Euclidean distance in predictor
space after normalisation of predictors. An optimal number of 35 clusters was selected due to the close overlap between the CV distance and
sample-to-prediction curve.

Figure D2. Multivariate nearest-neighbour distance density plot for mud content data with a partially repeated spatial random mixture
method for CV folds. The frequency of nearest-neighbour distances (x axis) is shown for sample-to-sample distance (red), sample-to-
prediction distance (green) and CV-fold analysis-to-assessment distance (blue). Due to the optimal spatial k-means clustering showing poor
overlap at lower multivariate distances (Fig. D1), a 1 % random sample without replacement was added to each fold.
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Figure D3. Multivariate nearest-neighbour distance density plot for organic carbon content data with the optimal block size across CV folds.
The frequency of nearest-neighbour distances (x axis) is shown for sample-to-sample distance (red), sample-to-prediction distance (green)
and CV-fold analysis-to-assessment distance (blue). dist: multivariate Euclidean distance in predictor space after normalisation of predictors.
An optimal block size of 100 km was selected due to close overlap between the CV distance and the sample-to-prediction curve.

Appendix E: Cell-specific uncertainty bounds for
predictive sediment maps

Figure E1. Estimated lower (a) and upper (b) bounds of the 95 % confidence interval for predictions of mud content (%) in sub-tidal marine
sediments across the Canadian continental margin. Within each panel the main plot shows the Arctic and Atlantic regions with the Pacific
region inset.
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Figure E2. Estimated lower (a) and upper (b) bounds of the 95 % confidence interval for predictions of carbon content (%) in sub-tidal marine
sediments across the Canadian continental margin. The continuous variable is shown in discrete colour bands to improve visualisation of
highly right-skewed data. Within each panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset.

Figure E3. Estimated lower (a) and upper (b) uncertainty bounds around the mean predictions of dry bulk density (g cm−3) of sub-tidal
marine sediments across the Canadian continental margin. Within each panel the main plot shows the Arctic and Atlantic regions with the
Pacific region inset.
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Figure E4. Estimated lower (a) and upper (b) uncertainty bounds around the mean predictions of organic carbon density (kg m−3) in sub-
tidal marine sediments across the Canadian continental margin. The continuous variable is shown in discrete colour bands to improve the
visualisation of highly right-skewed data. Within each panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset.

Appendix F: Bedrock distribution case studies

Figure F1. Predicted mean values of organic carbon density within
the Scotian Shelf overlain by the estimated distribution of rock sub-
strates. Data on the estimated distribution of rock on the seafloor
across the Scotian Shelf bioregion are taken from Philibert et
al. (2022).

Figure F2. Predicted mean values of organic carbon density within
the British Columbian EEZ overlain by the estimated distribution
of rock substrates. Data on the estimated distribution of rock on the
seafloor across the British Columbian continental margin are taken
from Gregr et al. (2021).
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