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Abstract

Marine heatwaves threaten the persistence of kelp forests globally. However, the

observed responses of kelp forests to these events have been highly variable on

local scales. Here, we synthesize distribution data from an environmentally

diverse region to examine spatial patterns of canopy kelp persistence through an

unprecedented marine heatwave. We show that, although often overlooked, tem-

perature variation occurring at fine spatial scales (i.e., a few kilometers or less)

can be a critical driver of kelp forest persistence during these events. Specifically,

though kelp forests nearly all persisted toward the cool outer coast, inshore areas

were >3�C warmer at the surface and experienced extensive kelp loss. Although

temperatures remained cool at depths below the thermocline, kelp persistence in

these thermal refugia was strongly constrained by biotic interactions, specifically

urchin populations that increased during the heatwave and drove transitions to

urchin barrens in deeper rocky habitat. Urchins were, however, largely absent

from mixed sand and cobble benthos, leading to an unexpected association

between bottom substrate and kelp forest persistence at inshore sites with warm

surface waters. Our findings demonstrate both that warm microclimates increase

the risk of habitat loss during marine heatwaves and that biotic interactions mod-

ified by these events will modulate the capacity of cool microclimates to serve as

thermal refugia.
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INTRODUCTION

Climate change is amplifying marine heatwaves such that
they are now considered a dominant threat to many coastal
marine ecosystems (Hughes et al., 2018; Smale et al., 2019;
Straub et al., 2019). In contrast to gradual warming—which
may drive predictable shifts in species distributions—marine

heatwaves are rapid, punctuated events that can perturb
entire ecosystems with long-term ecological consequences
(Coleman & Wernberg, 2020; Hughes et al., 2018; Smale
et al., 2019). Through both direct physiological effects on
organisms (Arias-Ortiz et al., 2018; Hughes et al., 2018; Smale
et al., 2019; Straub et al., 2019) and indirect effects arising
from altered species interactions (e.g., Burt et al., 2018; Vergés

Received: 5 January 2022 Revised: 22 March 2022 Accepted: 29 March 2022

DOI: 10.1002/eap.2673

Ecological Applications. 2022;32:e2673. https://onlinelibrary.wiley.com/r/eap © 2022 The Ecological Society of America. 1 of 18
https://doi.org/10.1002/eap.2673

 19395582, 2022, 7, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2673 by U

niversity O
f V

ictoria M
earns, W

iley O
nline L

ibrary on [28/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-9604-9188
https://orcid.org/0000-0002-6326-7998
https://orcid.org/0000-0003-1275-518X
https://orcid.org/0000-0003-4820-2544
https://orcid.org/0000-0002-9827-1612
mailto:samuel.starko@gmail.com
https://onlinelibrary.wiley.com/r/eap
https://doi.org/10.1002/eap.2673
http://crossmark.crossref.org/dialog/?doi=10.1002%2Feap.2673&domain=pdf&date_stamp=2022-08-17


et al., 2014, 2016), marine heatwaves have been responsible
for driving rapid ecological change in both temperate and
tropical waters (Filbee-Dexter & Wernberg, 2018; Hughes
et al., 2018; Wernberg et al., 2016). Over the past few decades,
marine heatwaves have become increasingly frequent and
intense, leading to losses of key habitat-forming coastal
species—including corals, mangroves, seagrasses and kelp
forests—in ecosystems around the world (Arias-Ortiz
et al., 2018; Babcock et al., 2019; Hughes et al., 2018; Smale
et al., 2019; Wernberg et al., 2016). When marine heatwaves
cause local conditions to exceed key physiological thresholds,
they can drive mass mortality on vast scales (e.g., Arias-Ortiz
et al., 2018; Hughes et al., 2018; Wernberg et al., 2016). At the
same time, marine heatwaves can introduce novel taxa
(Cavole et al., 2016; Vergés et al., 2014) or alter the relative
abundance of species that are critical to the food web (Burt
et al., 2018; Cavole et al., 2016; Hamilton et al., 2021; Harvell
et al., 2019; von Biela et al., 2019), potentially shifting the tro-
phic dynamics of ecosystems (Cavole et al., 2016). These com-
bined effects have the potential to cause the local or regional
extinction of key habitat-forming foundation species (Smale
et al., 2019; Vergés et al., 2019), producing devastating eco-
nomic consequences (Bennett et al., 2016) and driving regime
shifts with cascading effects on the functioning of coastal eco-
systems (Harley, 2011; Hughes et al., 2018; Smale et al., 2019;
Vergés et al., 2019; Wernberg et al., 2016).

Predicting the impacts of heatwaves on marine habitats
will be critical if we are to manage and preserve coastal eco-
systems through the 21st century, given that these heatwaves
are expected to continue increasing in frequency, duration,
and intensity under climate change (Oliver et al., 2018,
2019). Although organisms experience and respond to their
immediate environmental conditions, and most resource
managers work at local, rather than broad, scales (Bates
et al., 2018), much of our understanding about variation in
species’ responses to the direct and indirect effects of marine
heatwaves is based on broad latitudinal comparisons
(e.g., Cavanaugh et al., 2019; Vergés et al., 2016; Wernberg
et al., 2016). Yet, in parts of the ocean, temperature and other
environmental variables can vary considerably over short dis-
tances (e.g., millimeters to kilometers) and short time periods
(e.g., minutes to hours) (Bates et al., 2018; Harley, 2011;
Helmuth et al., 2002, 2014), indicating that latitude alone
fails to capture much of the variation in conditions experi-
enced by organisms through heatwave events (Bates
et al., 2018; Woodson et al., 2019). This creates a major chal-
lenge when trying to understand how ecosystem processes
such as carbon capture or habitat provisioning will change
with future warming. Failure to address this spatial mis-
match comes at our own peril because we must integrate
local microclimatic variation (i.e., ocean weather) to accu-
rately predict howmarine ecosystems will respond to climate
warming (Bates et al., 2018).

Of the coastal habitats currently most threatened by cli-
mate warming (Pörtner et al., 2019), kelp forests are the
most globally widespread. Found across more than a third
of the world’s coastlines (Jayathilake & Costello, 2021), kelp
(Laminariales) form three-dimensional habitats used by a
wide range of fish, invertebrates, and other macroalgae
(Graham, 2004; Steneck et al., 2002; Teagle et al., 2017).
They include some of the fastest growing primary producers
on Earth and play key roles in carbon and nutrient cycling
(Filbee-Dexter & Wernberg, 2020; Wilmers et al., 2012). Kelp
forests are critically threatened by warming in many areas
(Berry et al., 2021; Filbee-Dexter & Wernberg, 2018;
Smale, 2020; Smale et al., 2019), however, and declines in
kelp forests can have cascading effects on ecosystems
through losses of habitat (Filbee-Dexter & Wernberg, 2018)
and productivity (Duggins et al., 1989), yielding negative
consequences for fisheries, tourism, carbon capture, and
other ecosystem services (Bennett et al., 2016). Marine
heatwaves are now considered to be the dominant threat to
kelp forests (Pörtner et al., 2019), along with changes in tro-
phic structure that are often exacerbated by extreme
warming (Johnson et al., 2011; Ling, 2008; Ling et al., 2015;
Vergés et al., 2016; Watson et al., 2021). Yet, these drivers
can have highly variable effects on kelp forest ecosystems
(Burt et al., 2018; Krumhansl et al., 2016; Smale, 2020;
Wernberg et al., 2019), and the local-scale factors that deter-
mine how kelp forests respond remain poorly understood.

Our current lack of understanding about local drivers
of kelp resilience is especially problematic because
coastal ecosystems experience highly variable environ-
mental conditions across narrow spatial and temporal
distances (Bates et al., 2018; Harley, 2011; Helmuth
et al., 2002, 2014), which may drive variation in resilience
on a range of spatial scales. Although there is some evi-
dence from other systems that fine-scale temperature gra-
dients can mediate the responses of habitat-forming
species to heatwaves (e.g., Palumbi et al., 2014; Verdura
et al., 2021), the importance for kelp forests remains
unclear. Yet these types of gradients are especially com-
mon in fjords, bays, and inlets on temperate coastlines,
where kelp forests represent the most common coastal
biome (Jayathilake & Costello, 2021). This may help to
explain why the responses of kelp forests have also been
highly variable in the face of past heatwaves (Cavanaugh
et al., 2019; Hamilton et al., 2019; Krumhansl et al., 2016;
Reed et al., 2016; Smale, 2020; Straub et al., 2019).

Between 2014 and 2016, the Northeast Pacific experi-
enced the longest sustained marine heatwave on record
globally (Bond et al., 2015; Levine & McPhaden, 2016).
Driven initially by a persistent high-pressure system and
further extended by the unusually strong 2015–2016 El
Niño, this event lasted multiple years and had far-
reaching effects on coastal ecosystems, driving major
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alterations in trophic dynamics. Anomalously high sea
surface temperatures (SSTs) exacerbated the ongoing sea
star wasting disease epidemic that had already been deci-
mating sea star populations across the coast (Harvell
et al., 2019; Kohl et al., 2016; Montecino-Latorre
et al., 2016). This resulted in the functional extinction of
Pycnopodia helianthoides—an important predator of sea
urchins—from most of the Northeast Pacific (Hamilton
et al., 2021; Harvell et al., 2019). At the same time, anoma-
lously high temperatures drove direct kelp mortality
toward species’ latitudinal range limits (Arafeh-Dalmau
et al., 2019; Cavanaugh et al., 2019; Finger et al., 2021;
Rogers-Bennett & Catton, 2019) and likely made kelp for-
ests more susceptible to increased grazing pressure across
their ranges (McPherson et al., 2021; Rogers-Bennett &
Catton, 2019). Yet the effects of direct and indirect drivers
are challenging to disentangle and have been variable across
Northeast Pacific kelp forests (Beas-Luna et al., 2020; Burt
et al., 2018; Hamilton et al., 2019; Rogers-Bennett &
Catton, 2019; Schultz et al., 2016). Though kelp forests near
their southern limits (i.e., warm-edge) experienced losses
from low latitudes (Arafeh-Dalmau et al., 2019; Beas-Luna
et al., 2020; Cavanaugh et al., 2019)—as seen with past
heatwaves in other systems (Filbee-Dexter, Feehan et al.,
2020; Filbee-Dexter, Wernberg et al., 2020; Vergés
et al., 2016; Wernberg et al., 2016)—kelp populations toward
their range centers have shown highly variable responses
(from no impact to severe kelp loss: Reed et al., 2016;
Hamilton et al., 2019; Schroeder et al., 2020; Smith
et al., 2021; Beas-Luna et al., 2020). This suggests that local
or regional factors play key roles in mediating kelp forest
resilience across much of their range.

Here we synthesize historical and recent data sources
to evaluate the role of fine-scale environmental variation
(i.e., microclimate) in dictating the indirect and direct
impacts of the 2014–2016 marine heatwave on the North-
east Pacific’s two major canopy-forming kelp species.
Focusing on a coastal fjord system with high local tem-
perature variation and a legacy of kelp research (Barkley
Sound, British Columbia), we reconstructed the historical
distribution back to the 1970s of the two largest North-
east Pacific kelp forest species, Macrocystis pyrifera and
Nereocystis luetkeana, and conducted resurveys across a
local-scale temperature gradient of more than 3�C on
average to test whether microclimate influenced kelp for-
est persistence through the 2014–2016 marine heatwave.
We hypothesized that (1) the probability of local kelp for-
est extinction would vary significantly across this micro-
climatic gradient, with warmer sites being less persistent;
(2) during anomalously warm conditions, warm microcli-
mates would be sufficiently stressful to cause direct phys-
iological damage to the kelp; and (3) deeper habitats
could serve as thermal refugia in warm microclimates

only where newly increasing subtidal urchin populations
were not locally abundant. Overall, we establish that,
although the distribution of kelp forests across Barkley
Sound prior to the 2014–2016 marine heatwave was sta-
ble for at least four decades, this unprecedented marine
heatwave event triggered persistent losses relative to his-
torical baselines. Moreover, patterns of kelp loss reflect a
strong link between the resilience of kelp forests and pre-
existing environmental gradients that can buffer or exac-
erbate the impacts of ecosystem-level perturbation.

METHODS

Study system

Barkley Sound is a coastal fjord in British Columbia,
Canada, that opens to the Pacific Ocean at its southwest
edge. Barkley Sound lacks persistent sea otter (Enhydra
lutris) populations, which have been functionally absent
since their extirpation in the mid to late 19th century
(Markel & Shurin, 2015; Watson & Estes, 2011), meaning
that P. helianthoides is the dominant predator of sea
urchins (Burt et al., 2018) in the region. We conducted
our study on the Northeast Pacific canopy-forming spe-
cies Macrocystis pyrifera form integrifolia (giant kelp) and
Nereocystis luetkeana (bull kelp), which are the largest
and among the most ecologically important kelp taxa
globally (Graham, 2004; Teagle et al., 2017).

Direct environmental effects of heatwave

We collected and compiled environmental data with two
aims: first, to quantify temporal changes in temperature
at a broad scale and, second, to assess how variation in
these variables is distributed across Barkley Sound. To
characterize temporal patterns of temperature, we ana-
lyzed in situ data from n = 3 sites. The longest of these
time series is that of SST from Amphitrite Point Light-
house on the outer edge of Barkley Sound (1936–2021)
from which temperature anomalies were calculated. The
other two are subtidal stations where temperature has
been monitored since 1999 (at ~6 and ~10 m depth see
Appendix S1: Figure S1) and were used as additional
lines of evidence for temporal trends in temperature.

Our second aim was to capture local spatial variation
in temperature to better understand heterogeneity in the
environment over which broad-scale changes are sup-
erimposed. To characterize spatial variation in tempera-
ture, we deployed temperature loggers in 2019 and
2020 at varying distances (1–16 km) from the outer coast
and at varying depths (~0.1–8 m or intertidal). We
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defined the outer coast as a line between Cape Beale and
Amphitrite lighthouses (Appendix S1: Figure S1). Temper-
ature measurements taken in 2019 occurred while long-
term station temperatures exceeded baseline averages, only
about 0.5–1�C less than 2014–2016 on average, suggesting
that spatial patterns reflected those that occurred during
the marine heatwave. We also compared temperatures
from iButton loggers installed at two inshore sites in the
summers of 2015 and 2016 (Iwabuchi & Gosselin, 2019) to
temperatures collected at the Amphitrite lighthouse on the
outer coast. To explore spatial variation in dissolved nitro-
gen (specifically nitrate and nitrite) availability, we ana-
lyzed an unpublished data set by one of the authors
(L. Druehl; available at doi: 10.5281/zenodo.6397743) col-
lected between 1979 and 1982 (n = 18 time points, n = 7
sites) and two depths (1 and 4 m below surface). We also
collected comparable data at 1 and 5 m in August 2021
(n = 2 time points; n = 6 sites). In both cases, nitrate and
nitrite were combined for analysis. Though differences in
methodology and exact location varied by time point, we
tested whether nitrogen varied with distance from the
outer coast by fitting nonlinear decay models separately to
each depth for each data set. We note that, though low
salinity is an important limiting variable for kelp in the
broader region (Druehl, 1978), data collected by Druehl
et al. (1988) indicated little predictable variation in salinity
across the study area (which varies from ~30 to 27 ppt sea-
sonally). Specific information on different in situ measure-
ments are provided in Appendix S1: Section S1.

Indirect top-down effects

To test whether regional declines in the sunflower sea
star, P. helianthoides (described by Harvell et al., 2019;
Hamilton et al., 2019), have led to an increase in regional
urchin abundances—potentially increasing grazing pres-
sure on kelp forests—we analyzed subtidal scuba diver
data collected from 2013 to 2016 by Parks Canada at sites
(n = 6) in the Broken Group Islands at depths of 5–12 m.
These data include abundances of P. helianthoides,
Mesocentrotus franciscanus (red urchins), and Macrocystis
pyrifera along transects sampled at each site (n = 4 to
6 per year), allowing us to directly test whether sea star
wasting disease led to a trophic cascade that has limited
kelp abundance in rocky subtidal areas (Appendix S1:
Section S1). To test for differences in abundance between
years, we conducted generalized linear mixed-effects
models (fixed = year, random = site), varying the error dis-
tribution depending on the data set. For survey data on
urchin and Pycnopodia abundances, we used a negative
binomial distribution, which is appropriate for count data
where variance is substantially greater than the mean. For

data on kelp abundance (where average count per quadrat
was the response), we used a gamma distribution, which is
appropriate for right-skewed, continuous data.

Characterizing changes in kelp
distributions

To test whether direct and indirect effects of the 2014–2016
marine heatwave have altered the distribution of kelp for-
ests across space, we assembled all known relevant histori-
cal and modern data sets spanning from 1971 to 2016
(summarized in Appendix S1: Table S1). Synthesizing these
various data sources gave us a detailed record of kelp forest
presence-absence before and during the 2014–2016 marine
heatwave, giving us a reliable baseline with which we
could compare postheatwave distributions. These data
included aerial and satellite imagery, hand-drawn and
computer-generated maps, and site- or kelp-bed-level sur-
vey data. We conducted a series of resurveys between 2017
and 2021 aimed at determining changes in the distribution
of each species relative to preheatwave baselines.

For one stretch of coastline that spans the entire 16-km
microclimatic gradient and had especially high data cover-
age (including a low elevation flyover from 2007), we used
a “shoreline segment” method to compare across time
points. We assigned shoreline segments (mean length = 32
m) based on coastal features (e.g., distinct rocky outcrop-
pings or points) that were recognizable from both imagery
and a boat. Within each shoreline segment, we noted
whether canopy kelp was present or absent both in the his-
torical imagery and our postheatwave in situ surveys (see
Appendix S1: Section S1 for more information on shoreline
unit assignments and classification). For satellite imagery
and high-altitude aerial imagery, species assignment was
not possible, and thus data on both kelp species were
grouped. For comparisons between 2007 low-elevation fly-
overs and modern resurveys, species were treated sepa-
rately due to the high-resolution of images. Owing to
uncertainty in the resolution at which hand-drawn maps
were originally produced, we did not quantitatively com-
pare them to modern distributions; instead, we reproduced
these maps digitally by georectifying the original images
and producing a spatial layer matching the original draw-
ings. This allowed us to make qualitative comparisons
between original hand-drawn maps and those produced
from postheatwave surveys using the same basemap.

We also resurveyed individual kelp beds and rocky
shore sites that were depicted in maps and survey data.
Kelp beds and sites were treated the same way, and each
one was revisited based on geographical information,
photos, or detailed site descriptions. These data sets (from
1993 to 1995 and 2008) included a haphazard selection of
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the kelp forests that were present across Barkley Sound
during historical survey periods. Although the definition
of a kelp bed can vary by surveyor, we considered a bed
to be present if at least a single plant was still found in
the vicinity of a historically mapped bed. We used logistic
regression to test whether the probability of kelp forest
extirpation from sites or segments was dependent on dis-
tance from open coast. To compare data from 1993 to
1995 (Appendix S1: Table S1) with modern resurveys
(2017–2020), each of which included multiple years, we
randomly selected one pre- and one postheatwave time
point for each site.

Kelp growth measurements and condition
assessments

To infer whether kelp from warmer areas were physiologi-
cally stressed in shallow waters during marine heatwaves,
we measured the growth of tagged Macrocystis plants at
four sites along the microclimatic gradient during the sum-
mer of 2020, a subsequent year of anomalously warm tem-
peratures (Chen et al., 2021). We also measured health
metrics of both Macrocystis (n = 5 sites) and Nereocystis
(n = 7 sites) believed to be indicative of stress (namely:
bleaching and blade length; see Appendix S1: Section S1).
Growth experiments and health measurements were con-
ducted between 2 and 12 July 2020. Though wave exposure
likely also plays a factor in morphological features, like
blade length, and generally becomes reduced moving
inshore, we intentionally aimed to collect measurements
from sheltered bays along the temperature gradient to mini-
mize these effects (Appendix S1: Section S1). In situ temper-
ature measurements from Amphitrite Point indicated that
this time window was on average 0.8�C above historical
averages and even reached temperatures exceeding the 90th
percentile of historical measurements (indicative of marine
heatwave conditions) (Hobday et al., 2016) for 2 days. This
is further corroborated by data from Taylor Islet, showing
July 2020 as a month of unusually warm temperatures com-
pared to previous years. We used linear models (on site-
level averages) to test for the effect of distance from open
coast (a proxy of microclimate; see Results) on each health
metric. We also used an analysis of variance (ANOVA)
and Tukey post hoc test to compare mean frond and blade
growth rates across two inner and two outer coast sites.

ROV transects and photoquadrats

To supplement our surface surveys and to better under-
stand the factors influencing the persistence or disappear-
ance of kelp forests, we conducted a series of remotely

operated vehicle (ROV) surveys. In Barkley Sound, the
lower limit of kelp is generally set by either sea urchins
(usually Strongylocentrotus purpuratus or Mesocentrotus
franciscanus) or by the lack of rocky substrate (e.g., sand
or silt) (Druehl, 1978). To characterize the drivers of kelp
lower limits across the environmental gradient, we con-
ducted ROV surveys using the Trident Underwater Drone
(Sofar Ocean, San Francisco, CA). We used a stratified
random sampling approach to select points along the
shoreline (n = 35) and then conducted vertical ROV sur-
veys from below the lowest macroalgae in toward shore at
the start of each unit. From this underwater imagery we
extracted the depth below datum of the lowest macroalgae,
the depth of the highest urchin (if present), and then the
substrate below the lowest macroalgae. We also estimated
a qualitative score of urchin abundance based on per-
ceived percentage cover of urchins on the benthos in the
ROV videos (0 = absent, 1≤ 6%, 2 = 6%–20%, 3≥ 20%).
This measure was taken from their vertical band of
greatest abundance, provided it was within 2 m elevation
of lowest macroalgae depth. In addition to randomly cho-
sen survey sites, we conducted several additional haphaz-
ard surveys with the goal of detecting Macrocystis beds not
visible from the surface, a phenomenon previously
reported in Barkley Sound (Druehl, 1978) and elsewhere
along the west coast of North America (Ladah et al., 1999).
In one location previously described has having a sub-
merged bed (Sharp, 1974), we conducted a ~500-m hori-
zontal ROV survey along the shore. For this survey, the
ROV was sent to the bottom and followed by the boat. The
survey was conducted in a zigzag manner across depths in
order to assess the continuity of the bed.

We tested for an effect of substrate and distance from
open coast on kelp presence using a binomial logistic
regression. To test for an effect of these same fixed effects
on maximum seaweed depth and urchin abundance
score, we conducted an analysis of covariance
(ANCOVA) and a Kruskal-Wallis test, respectively. In
addition to our ROV surveys, we conducted surveys using
a photoquadrat dropped from the surface to quantify
urchin density and percentage foliose algae cover across
depths at some sites (see Appendix S1: Section S1).

Statistical analysis and visualization
software

All analyses were conducted in R version 4.1.2 using the
following packages: tidyverse (Wickham et al., 2019),
lme4 (Bates et al., 2015, 4), nlme (Pinheiro et al., 2017),
and glmmTMB (Brooks et al., 2017). Visualizations were
performed using ggplot2 (Wickham, 2011) and ArcMap
(ESRI, Redlands, CA).
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RESULTS

During the 2014–2016 Northeast Pacific marine heatwave,
kelp forests went locally extinct at roughly 40% of the sites
(41 out of 102, or 40%) or shoreline segments (125 out of
290, or 43%) that we resurveyed, with most losses occurring
at inshore sites that experienced the warmest temperatures.

Remarkably, SSTs varied by more than 3�C on average
across the 16-km gradient from the outer coast to the inner
sound, even during nonheatwave years (Figure 1,
Appendix S1: Figures S1–S3), such that surface waters at
inshore sites commonly reached temperatures that far sur-
passed those typical of either kelp species’ midrange.
Instead, summer temperatures experienced at inshore sites

(b)

(e)

(a)

(c) (d)

F I GURE 1 Changes in distribution of canopy-forming kelp species along a temperature gradient. (a) Map of change in distribution of

two canopy-forming kelp species in Trevor Channel, Barkley Sound, 2007–2018/2019 (red = extirpation, blue = persistence,

green = colonization, gray = never occupied). Both shoreline segments (lines; first sampled 2007) and 2008 survey sites (diamonds) are

shown. The colored bar above the map indicates the position of sites along an average summer sea surface temperature (SST) gradient as

measured in 2019. (b–d) Probability of extirpation at a particular segment or site as a function of its distance from the open coast, for

(b) Nereocystis, (c) Macrocystis (both from shoreline segment data), (d) Macrocystis (2008 site data); (e) proportion of inshore shoreline

segments (>8 km from open coast) occupied by canopy kelp at each time point between 2007 and 2020. Asterisks indicate significant

differences from the initial 2007 survey (***p< 0.001); n indicates number of segments sampled each year.
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were typically more similar to those experienced at ~10�–
15� latitude further south. Warmer inshore sites were also
found to be generally more nitrate depleted in the summer
(Appendix S1: Figure S4), which is known to further
impair the thermal tolerance of canopy kelp (Fern�andez
et al., 2020). Synthesizing multiple data sets, we found clear
evidence that both kelp species were present along this
entire gradient in every data set from the four decades prior
to the heatwave (1971–2014). Then, beginning in 2014, kelp
forests experienced temperatures at least 1.5–2�C warmer
than historical baselines, conditions that persisted for several

years with onemonthly temperature anomaly lasting 21 con-
secutive months (Figure 2a). Though temperatures toward
the outer coast of Barkley Sound remained close to optimal
growth temperatures (~15�C), surface waters 12 km
inshore regularly reached temperatures >18�C (Figure 2),
exceeding the optimal thermal range of both focal species
(Fern�andez et al., 2020; Supratya et al., 2020). In both 2015
and 2016, short-term surface temperatures as high as
~22�C were recorded at inshore sites (Figure 2,
Appendix S1: Figure S4), 5�C warmer than the warmest
temperature recorded at a long-term station on the outer

(a) (d)

(b)

(c)

(e)

July–August

F I GURE 2 Environmental change and kelp fitness consequences in Barkley Sound. Shown are monthly temperature anomalies

between 2006 and 2020 (calculated relative to 35-year monthly average) at (a) Amphitrite Point Lighthouse on outer edge of Barkley Sound,

temperature of warmest month at two long-term sites in Barkley Sound through time (linear model: Station 1—F = 7.6934, df = 21,

p = 0.0132; Station 2—F = 5.7463, df = 20, p = 0.0270). (b) The 2014–2016 marine heatwave is highlighted in pink. (c) Relative frequency of

in situ temperature measurements from summer of 2015 at Amphitrite Point (open coast; surface temperature) and Fleming Island (�12 km

inshore; 1–1.5 m depth); (d, e) growth rate and blade bleaching of Macrocystis pyrifera along a microclimatic gradient. (d) Examples of kelp

blades growing at the surface at an outer coastal site (outer 1) and an inshore site (inner 2); (e) blade growth of Macrocystis blades at inshore

(n = 2) and outer shore (n = 2) sites measured in July 2020. Letters indicate significant differences between means as determined by a

Tukey’s post hoc test.

ECOLOGICAL APPLICATIONS 7 of 18
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coast of Barkley Sound. During this time, kelp forests were
extirpated at most sites located more than 8 km inshore
(Figure 1a, Appendix S1: Figures S5–S10).

We found strong support for the hypothesis that kelp
from warmer inshore waters were more likely to have
been extirpated than those toward the cooler outer shore
when compared to all earlier time points (1993–1995,
2007, 2008, 2013, 2014; logistic regressions: p< 0.01 in all
comparisons; Figure 1b–d, Table 1, Appendix S1:
Table S1). This spatial pattern of kelp loss was further
reflected in qualitative comparisons to hand-drawn maps
from the 1970s, which indicate the historical presence of
kelp forests along the entire temperature gradient at that
time (Appendix S1: Figure S7). This pattern was consistent
regardless of data collection methodology or historical year
of comparison, indicating that changes in kelp forest distri-
bution far surpass typical interannual variation. Moreover,
one historical data set (Appendix S1: Table S1) was
restricted to intertidal areas, but others were more inclu-
sive subtidal surveys (that included any canopy kelp visi-
ble from the surface, regardless of depth). Thus, kelp
extirpations captured across all survey types provide strong
evidence that canopy kelp forests have declined across
their previous vertical distribution on the shore.

Kelp losses have persisted for several years since the
heatwave (i.e., from 2017 to 2021), and remaining kelp
have continued to decline in some inshore areas
(Appendix S1: Figures S7 and S8), coinciding with persis-
tent temperature anomalies (Figure 1), which may hinder
recovery and drive further mortality. In particular, there
was a secondary marine heatwave in 2019–2020 (Chen
et al., 2021), which was a period associated with further
declines in kelp extent in Barkley Sound (Appendix S1:
Figure S7). We leveraged this sustained warming to test

the effect of anomalously warm water on kelp growth
and health and found evidence that inshore surface
waters were physiologically stressful for kelp during sum-
mer conditions that approached those experienced during
the marine heatwave. We found that inshore Macrocystis
kelp had reduced frond (ANOVA: F = 71.62, p< 0.001)
and net blade (ANOVA: F = 9.35, p< 0.001) growth rates
(Figure 2e) and increased blade bleaching (linear mode:
F = 40.12, p< 0.01, df = 5, Appendix S1: Figure S11) rela-
tive to populations near the open coast. Though Macrocystis
blades from outer sites grew ~0.7 cm/day on average,
inshore kelp blade did not grow at all over the several days
of monitoring and had negative net blade growth
(Figure 2d, Appendix S1: Figure S11), indicating that tissue
was fragmenting faster than it was growing. Kelp from
inshore sites also had reduced blade length in both species
(Macrocystis: ~0.2 m versus ~0.3 m on average; ANOVA:
F = 5.471, p< 0.01; Nereocystis: ~0.7 m to >1.9 m on aver-
age; linear model: F = 40.12, p = 0.001; longest: F = 19.07,
p< 0.01, Appendix S1: Figure S11).

Subtidal surveys conducted between 2013 and 2016
(at n = 6 sites) by scuba reveal that the abundance of the
sea star, P. helianthoides, dropped significantly during the
heatwave (Figure 3a; χ2 = 22.51, p< 0.001), from more
than two individuals per transect before the heatwave to
~0.5 per transect in 2016. During this same time period,
the abundance of the red sea urchin, Mesocentrotus fran-
ciscanus (Figure 3b; χ2 = 51.751, p< 0.001) also increased
approximately 10-fold across these sites from ~5 individ-
uals per transect on average before the heatwave to more
than 50 in 2016. This increase in urchin abundances was
associated with losses of kelp at these deeper subtidal
(<5 m) depths (Figure 3c; χ2 = 32.487, p< 0.001). Though
from 2013 to 2015 Macrocystis was found at a density of

TAB L E 1 Results of binomial regression testing for a relationship between distance from open coast and extirpation probability.

Data source Species
Historical
years

Resurvey
years

Sample
size (n) Coefficient df Z-statistic

Aerial flyover (segments) Both species 1981 2018 254 1.029*** 253 8.52

Parks Canada intertidal
surveys (sites)

Macrocystis 1993–1995 2017–2020 49 0.281** 48 2.69

ShoreZone Aerial
flyover (segments)

Macrocystis 2007 2018 195 0.325*** 194 5.63

Nereocystis 2007 2018 104 0.681*** 103 4.32

Both species 2007 2018 297 0.435*** 296 8.78

Google Earth
imagery (segments)

Both species 2013 2018 131 0.641*** 130 5.48

Aerial flyover (segments) Both species 2014 2018 293 0.326*** 292 7.78

Bamfield Marine Sciences Centre
student kelp forest maps (sites)

Macrocystis 2008 2019 37 0.909** 36 2.91

Note: Significant F-statistics are shown in bold with asterisks indicating significance value (*p< 0.05, **p< 0.01, ***p< 0.001).
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~1–2 stipes/m2, four out of six sites had no Macrocystis in
2016, with an average of only 0.1 stipes/m2 across all
sites. This pattern of change across trophic levels is con-
sistent with a top-down trophic cascade caused by drastic
decreases in the abundance of predatory sea stars. Thus,
changes in trophic dynamics in deeper waters have likely
contributed to patterns of kelp loss, threatening forests in
deeper habitats that are typically cooler (Appendix S1:
Figures S12 and S13) and more nutrient rich
(Appendix S1: Figure S4).

Underwater surveys conducted with a ROV across our
study region (in October 2020, Figure 4, Appendix S1:
Figure S14) revealed sharp transitions between fleshy
macroalgae-dominated communities and urchin barrens,
mostly lacking fleshy algae, corroborating past work that

urchins set the lower depth limit of kelp forests in Barkley
Sound (e.g., Druehl, 1978; Markel & Shurin, 2015). Sea
urchins reached their upper limits within a few meters of
the maximum depth of fleshy seaweeds at all rocky sites,
and these transitions always occurred subtidally (between
0 and 5 m below chart datum: mean lower low water large
tide; Figure 4, Appendix S1: Figure S15). Sea urchin upper
depth limits had a similar range for sites with and without
kelp (Appendix S1: Figure S16), strongly suggesting that
urchins alone do not explain the complete loss of fringing
kelp beds right up into the intertidal zone. Moreover, we
recorded kelp losses at multiple sites from warm inshore
areas that appeared to lack urchins and were not replaced
by urchin barrens. Instead, other macroalgae, including
red turfy seaweeds, other kelp species, Desmarestia spp., or
Sargassum muticum, have replaced some of the lost forests
at inshore sites (Appendix S1: Section S2).

Despite extirpation of kelp forests in many inshore
areas, some stretches of inshore coastline with unstable
substrate did retain kelp, illustrating the potential for
local refugia. ROV surveys revealed that, somewhat sur-
prisingly, bottom substrate played a key role in determin-
ing this kelp forest persistence: communities at sites with
unstable substrate (>50% sand/sediment and cobble; here-
after “sandy”) lacked urchins at all but one site (Figure 4;
Kruskall-Wallis on urchin abundance score: χ2 = 26.257,
df = 2, p< 0.0001; Appendix S1: Figure S17) and seaweeds
extended to greater depths than at predominantly rocky
sites (<50% sand/sediment/cobble; hereafter “rocky”)
(Figure 4). This pattern was reflected in a significant inter-
action between substrate type (two levels: sandy, rocky)
and distance from open coast on maximum seaweed depth
(Figure 4b; ANCOVA: t = �4.029, p < 0.001, df = 34).
The absence of urchins in sandy areas was further associ-
ated with increased probability of canopy kelp presence
but only further from the open coast (logistic regression;
substrate� distance interaction: z = 3.349, p < 0.001,
df = 34), such that sandy areas inshore tended to retain
kelp in the absence of urchins.

Remarkably, some of these deeper sandy coves had
extensive populations of Macrocystis (mixed with under-
story kelp) even in areas of locally warm surface waters.
These forests extended to depths of ~10–14 m below
datum, deeper than is typical in Barkley Sound
(Druehl, 1978; Markel & Shurin, 2015). In some cases,
these forests were barely visible from the surface, except
for a relatively small number of individuals that were
sometimes visible in the shallows. In fact, toward the
deeper limit of these beds, Macrocystis plants had an
unusual prostrate morphology. They had large blades rel-
ative to each float (sometimes several meters) and mostly
lay flat along the bottom (Figure 4f). This morphology
was described by Lobban (1978), Sharp (1974), and

(a)

(b)

(c)

F I GURE 3 Trophic cascade impacts the abundance of

subtidal kelp forests. Shown are scuba survey data depicting

average abundance (�SE) of (a) sunflower star, Pycnopodia

helianthoides, (b) red urchin Mesocentrotus franciscanus, and

(c) giant kelp, Macrocystis pyrifera, at subtidal sites (n = 6) in

Barkley Sound spanning 2014–2016 marine heatwave and sea star

die-off. Letters indicate significant differences between individual

means.
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Druehl (1978) from these same coves but seldom recorded
elsewhere for this species (but see the somewhat similar
record from New Zealand: Gerard & Kirkman, 1984). We
tracked the largest of these submerged forests for over 500
m and did not locate either end of the continuous bed
(Video S1). Though kelp at these depths were visibly

healthy, shallow fronds in this mostly submerged forest
were sampled during our growth survey and showed a
lack of growth capacity at the surface (Figure 2d,
Appendix S1: Figure S11), suggesting that the persistence
of these Macrocystis plants is only viable due to the avail-
ability of habitat below the thermocline.

(a)
(d)

(e)

(f)

(g)

(b)

(c)

F I GURE 4 Spatial patterns and local drivers of kelp loss and resilience. (a–c) Results of vertical remotely operated vehicle surveys at

random sites (n = 35) at increasing distances from the open coast. Panels shows the probability of (a) kelp occupancy, (b) lower depth limit

of fleshy seaweeds, and (c) urchin abundance score as a function of both substrate and distance from open coast. (d–f) Example images from

different scenarios shown in panel (b): (d) a fringing Macrocystis forest and (e) macroalgae reef interfacing with urchin barrens at rocky sites,

as well as (f) a sandy site with a submerged Macrocystis forest. (g) Conceptual model that explains how substrate and local environmental

stress predict spatial patterns of kelp loss. Prior to heatwave, kelp was present along the entire gradient. During the marine heatwave, kelp

died back from the surface and were extirpated from sites where habitable water conditions were only available below the lower depth of

urchins. Sandy habitats then provide deep refugia by limiting urchin abundances. Scenarios shown in (d–f) are also depicted in (g). MHW,

marine heatwave.
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DISCUSSION

Marine habitats are threatened globally by climate change,
including gradual and acute temperature increases, and
other human-mediated changes to the physical and biologi-
cal environment (Filbee-Dexter & Wernberg, 2018;
Wernberg et al., 2019). However, regional and local envi-
ronmental heterogeneity has led to wide variation in the
responses of habitat-forming foundation species to these
ongoing stressors (Claar et al., 2020; Krumhansl et al., 2016;
Palumbi et al., 2014; Pfister et al., 2018; Smale, 2020).
Understanding the fine-scale factors that drive this varia-
tion is essential if we are to make accurate predictions
about future ecosystems in a changing ocean (Bates
et al., 2018). Here, we investigated the role of microclimate
in mediating the local responses of kelp forests to multiple
abiotic and biotic stressors experienced throughout the
Northeast Pacific at a broad scale (Bond et al., 2015;
Cavanaugh et al., 2019; Cavole et al., 2016; Harvell
et al., 2019; Rogers-Bennett & Catton, 2019). We did so by
leveraging a persistent spatial gradient of summer SSTs that
exposes kelp further from the open coast to temperatures
comparable to those felt ~2000 km further south. We dem-
onstrated that kelp forests in locally warm microclimates
were less likely to persist through a major marine
heatwave. Though kelp occupancy toward the open coast
has remained largely unchanged for decades (<4% loss in
the outermost 8 km), we detected a >70% decline in kelp
occupancy from inshore (≥8 km) shoreline segments that
occurred during the 2014–2016 marine heatwave
(Figure 1e). Though this correlation with local microcli-
mate might imply that direct physiological stress is the
main driver of kelp forest extinction, our data suggest that
this pattern reflects a complex interaction between direct
and indirect (i.e., abiotic and biotic) drivers.

Drivers of kelp loss

We documented kelp forest losses up into the intertidal
zone (above urchin limits in our study area; Figure 4a)
and in some shallow sandy bays that appear to lack
urchins (with remnant kelp populations showing signs of
physiological stress or surface dieback; Appendix S1:
Section S2; Figures S18–S22). This provides direct evi-
dence that environmental drivers are responsible for kelp
declines in shallow waters. In addition to warmer tem-
peratures, the heatwave was associated with reduced
nitrate content off the coast of Barkley Sound (Peña
et al., 2019), an issue that may have been exacerbated
toward the warm edge of the gradient where nitrate
availability is generally lower (Appendix S1: Figure S4).
However, canopy kelp forests commonly experience low

nitrogen levels during regular seasonal cycles (e.g., Hurd
et al., 2000; Smith et al., 1983; Smith et al., 2018). For
example, Dixon Island in Barkley Sound (which lost kelp
during the heatwave; Appendix S1: Figure S5) commonly
has very low nitrate in the summer (Druehl et al., 1988;
Hurd et al., 1994, 2000) but consistently had kelp prior to
the heatwave. There is direct experimental evidence that
nitrogen limitation negatively impacts kelp thermal toler-
ance (Fern�andez et al., 2020; Gerard, 1997). Thus, we
propose that, although temperature was the principal
driver of kelp loss, interactions with local nutrient
regimes may have been important in determining the
temperature threshold at which kelp mortality occurred.

The direct physiological effects of temperature and
reduced nutrients are exemplified by our surveys of kelp
growth and metrics of health. Not only was growth
reduced at inshore sites during the warm summer condi-
tions of 2020, but blade growth was negative, indicating a
net loss of tissue. Blade bleaching likely directly reflects a
stress response to environmental conditions, and shorter
blades at sites further from the open coast may also be a
consequence of weaker tissues and increased dissolution
in the presence of low nutrient levels or high temperature
(Simonson et al., 2015; Stephens & Hepburn, 2016; Filbee-
Dexter, Feehan et al., 2020). Other factors, such as waves
and currents, can also strongly influence blade length, and
though we attempted to limit these confounding factors by
sampling only in protected coves, we cannot fully rule out
these potential drivers. However, given the direct observa-
tion of net tissue loss and the magnitude of variation
between sites (~1.9 vs. ~0.7 m on average for Nereocystis),
we strongly suspect that temperature and nutrients con-
tribute to this variation in blade length. The lack of differ-
ence in blade number indicates that variation in blade
length is likely not a consequence of differences in kelp
age or phenology. Overall, these growth data and health
metrics indicate that the surface water conditions further
from the open coast are unsuitable for kelp forest persis-
tence during anomalously high summer temperatures.

Cooler, nutrient-rich water below the thermocline
may offer a refuge for kelp forests (Giraldo-Ospina
et al., 2020; Graham et al., 2007). However, urchin preda-
tion can limit the maximum depth of kelp forests by graz-
ing at their seaward edges (Markel & Shurin, 2015),
potentially preventing kelp populations from establishing
or persisting in these thermal refugia. Along the entire
Northeast Pacific coastline, sustained warm temperatures
during the 2014–2016 heatwave indirectly enhanced the
spread of marine disease, leading to the functional extinc-
tion of the sunflower star Pycnopodia and subsequent
increases in urchin abundance (Harvell et al., 2019).
Barkley Sound was no exception. As expected, subtidal
surveys spanning the heatwave revealed a trophic
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cascade in which the loss of the predatory sea star,
P. helianthoides, was associated with a sharp increase in
urchin abundance and losses of kelp in deeper subtidal
areas. The timing of this increase in urchins parallels an
independent data set from a long-term inshore subtidal
site in Barkley Sound monitored between 1990 and 2020,
where red urchins rapidly increased following 2015 (see
fig. 5 in Watson et al., 2021), consistent with the timing
of sea star wasting disease. Increases in urchins, possibly
along with calmer seas during periods of warming
(Watson et al., 2021), may have facilitated the movement
of urchins upshore (Markel & Shurin, 2015), thereby
reducing the availability of deeper, subtidal habitats.
Thus, high temperatures and abundant urchins impacted
kelp forests across different parts of their depth range,
together driving losses in warmer areas.

We present a conceptual framework outlining how
microclimate and grazing pressure may interact to influ-
ence kelp forest occupancy in our system (Figure 4g),
derived from ecological theory about how climate change
can differentially impact the zonation patterns of inter-
acting species, and lead to local extinctions (Harley, 2003,
2011). We propose that environmentally stressful condi-
tions excluded kelp forests from shallow waters in local
“hotspots” while having limited direct impact on outer
coast kelp forests or those in deeper areas below the ther-
mocline. These outer-shore or deeper kelp forests experi-
ence the cool temperatures typical of those expected at
midrange for these species and, like other midrange
outer-coast kelp populations (Hamilton et al., 2019), were
largely resilient in the face of increased temperatures.
Simultaneously, urchin populations have expanded,
likely also becoming more aggressive (i.e., less time hid-
ing) following predation release, as their main predator
was lost from the system (Smith et al., 2021). Urchins set
a lower depth limit for kelp on rocky shores and their
increases have likely driven kelp further up the shore
(Markel & Shurin, 2015) or reinforced existing bound-
aries of fringing kelp forests, eliminating those deeper
than a few meters below the surf line. Moreover, Watson
et al. (2021) hypothesized that upshore movement in
urchins could have also been facilitated by calmer condi-
tions during the marine heatwave, allowing urchins to
graze shallower than usual. In areas where urchins and
warm surface conditions co-occur, kelp forests have been
“squeezed out” by these combined effects (Figure 4g). In
contrast, in the absence of either one of these stressors,
kelp forests were largely persistent, remaining as shallow
fringing forests in the cool waters of the outer coast or as
deeper, largely submerged forests in the absence of
urchins at inshore sandy sites (Figure 4g). The tendency
for multiple drivers to influence organisms in nonlinear
ways is an increasingly recognized phenomenon in

ecology and conservation (Brook et al., 2008). Our results
highlight that one mechanism for such interactive effects
of multiple drivers is through the differential impacts of
individual drivers on different types of microhabitats
(in this case depth). This squeezing effect by multiple
drivers has been documented in other systems where
stressors are vertically graded. In particular, the intertidal
algaMazzaella parksii can be excluded from communities
if stress from aerial exposure pushes them below the
upper limit of their gastropod grazers (Harley, 2003).
Similarly, the interacting effects of deoxygenation and
ocean acidification are expected to reduce the vertical dis-
tribution of Humboldt Squid within the water column
(Rosa & Seibel, 2008). Together these patterns illustrate
that variation between horizontal and vertical drivers will
play an important role in driving the future distributions
of marine taxa.

Although not directly responsible for kelp forest losses,
biotic interactions with other seaweeds may influence the
capability of kelp to recolonize these coastlines (Filbee-
Dexter & Wernberg, 2018). The warmth-tolerant invasive
seaweed Sargassum muticum, for example, has increased
in abundance in Barkley Sound over the past two and half
decades (Starko et al., 2019) but is restricted to wave-
sheltered sites. Many of the kelp forests that were lost at
inshore sites were not replaced by Sargassum, but for
those that were, dense Sargassum beds may limit recruit-
ment of canopy kelp through competition for space and
light. Other seaweeds to replace canopy kelp include foli-
ose red algae (e.g., Prionitis spp., Chondracanthus spp.)
and Desmarestia spp. Little is known about how competi-
tion for space with these seaweeds limits the capacity for
recolonization by Macrocystis or Nereocystis in the North-
east Pacific, but work elsewhere has shown that competi-
tion with primary space holders may be a key factor
limiting the recovery of kelp forest ecosystems once they
have collapsed to a degraded state (Filbee-Dexter
et al., 2016; Filbee-Dexter & Wernberg, 2018; Fredriksen
et al., 2020).

Subsurface refugia

We identified several areas in Barkley Sound where sur-
face waters were warm, but the absence of urchins
allowed kelp to grow to greater depths. Urchins have
been shown to largely avoid sand, strongly decreasing the
strength of kelp–urchin interactions in sandy areas
(Ferrario et al., 2021; Laur et al., 1986). Our ROV surveys
revealed an interacting effect of benthic substrate and
distance from open coast on kelp presence. Sandy sites
toward the open coast tend to be wave-exposed beaches
and are therefore unsuitable habitat for kelp forests
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owing to the movement of unconsolidated substrate.
However, sandy habitats in sheltered coves further
inshore likely experience little water movement, enabling
the establishment of kelp populations on small pebbles
or cobble in the sand while eliminating urchins (Laur
et al., 1986). Together these results indicate that, in the
absence of urchins, deeper waters may act as refugia in
the face of warm surface conditions. Moreover, local sub-
strate condition may limit urchin populations, potentially
offering fine-scale local refugia in the face of herbivore
booms.

The role of deep-water kelp forests as thermal refugia
is well documented globally (Giraldo-Ospina et al., 2020;
Ladah et al., 1999). For example, diebacks of the surface
canopy occur in Macrocystis populations from Southern
and Baja California during El Niño years (Ladah
et al., 1999), facilitating long-term forest persistence. In
Australia, deeper forests had higher survival through the
2011 marine heatwave than did shallow-water kelp
(Giraldo-Ospina et al., 2020). Spatial refugia also play an
essential role in global kelp biogeography (Bolton, 2010),
such as those in deep tropical waters (much deeper than
in this study), despite the warm, eutrophic surface waters
(Graham et al., 2007), or those in the Arctic below sea-
sonal ice cover (Filbee-Dexter et al., 2019). Our results
contribute additional evidence for the general importance
of subsurface thermal refugia and further demonstrate
that the availability of these refugia can strongly depend
on biotic interactions. Overgrazing by urchins caused by
predator extirpation is common throughout the North-
east Pacific and is likely to strongly limit the availability
of deep habitats for kelp. However, local conditions can
also limit urchin abundance or influence the efficacy of
their grazing (Figure 4d–f), potentially making way for a
natural mosaic of habitable refugia.

Some of the remaining kelp forests at the warm edge
of the local temperature gradient were nearly or entirely
submerged below the surface. Though the extent to
which these mostly submerged Macrocystis populations
are distributed across protected bays in the Northeast
Pacific remains unclear, submerged beds in locally warm
areas have been anecdotally reported in California and
Chile (Edwards, 2004; Gerard & Kirkman, 1984; Ladah
et al., 1999; Mora-Soto et al., 2020). In these cases, the
submerged form has often been associated with persis-
tently high temperatures (e.g., 17–18�C; Mora-Soto
et al., 2020), comparable to those we recorded at inshore
sites in Barkley Sound. The presence of submerged kelp
forests may bias data collected through surveys con-
ducted at the surface or through analysis satellite or
aerial imagery (Mora-Soto et al., 2020). Thus, understand-
ing the conditions that lead to subsurface kelp forests will
be an important step in ground-truthing the use of

remote sensing data for kelp monitoring. However, our
results show that by coupling in situ surveys with
remotely sensed imagery, novel insights into the pro-
cesses driving patterns of kelp forest loss can be gained.

CONCLUSIONS

Although drivers of resilience to climate perturbations
are often studied in similar habitats over broad latitudi-
nal gradients (e.g., Cavanaugh et al., 2019; Wernberg
et al., 2016), here we demonstrated that local-scale varia-
tion could be instrumental in mediating the responses of
species and ecosystems to global change. We showed that
the position of kelp forests along a microclimatic gradient
of ~16 km strongly influenced their probability of persis-
tence through the 2014–2016 marine heatwave. Although
the impacts of marine heatwaves are likely to be most
acute at low latitudes, coastlines tend to become more
geographically complex at higher latitudes with substan-
tially more wave-sheltered, inshore coastline (Starko
et al., 2019). Inshore waters in bays and fjords may expe-
rience disproportionate climate variability relative to the
open coast, where latitude may better predict the temper-
atures experienced each season. Yet, complex, fjord-laden
coastlines make up a substantial proportion of the kelp
forest habitat on Earth (Jayathilake & Costello, 2021), a
pattern that may create large pockets of unexpected rapid
change owing to the exacerbated effects of shifting envi-
ronmental conditions. Midlatitude, fjord-laden shores
represent immense stretches of coastline (e.g., ~60,000
km in British Columbia alone vs. ~1000 km of linear
coastline along the outer coast of Washington and Ore-
gon combined). Losses of kelp forests from these
immense areas could have profound effects on coastwide
productivity, habitat connectivity, and carbon drawdown.
Understanding how this fine-scale variation contributes
to the spatial resilience of marine foundation species in
the face of abiotic and biotic perturbations will be essen-
tial if we are to meaningfully scale up predictions about
how global change will impact marine habitats to the
broadest spatial scales.

The effective management of kelp forest ecosystems
will depend on our ability to understand and mitigate the
stressors limiting their resilience and distributions
(Hollarsmith et al., 2022); our data contribute critical
insights in this regard. Our study illustrates how varia-
tion within even a relatively small region could lead to
substantially different levels of resilience across local kelp
forest habitats, and this should be considered when
designing monitoring schemes or interpreting monitoring
data. Moreover, inshore habitat that experiences greater
environmental variation should be specifically targeted
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for monitoring and conservation actions in order to iden-
tify local or regional areas of vulnerability. Our results
also suggest that, at least in the short term, the suppres-
sion of urchin populations (e.g., through otter introduc-
tions or active urchin removals) could enable kelp forests
to extend to greater depths, thereby increasing their resil-
ience to environmental stress at the surface. This adds to
the growing evidence that mitigation of destructive urchin
grazing should be a management priority in the Northeast
Pacific despite its inherent challenges (Gregr et al., 2020;
Wilmers et al., 2012). Short-term reduction in grazing pres-
sure could also provide time to identify heat-resistant kelp
genotypes (Coleman & Goold, 2019; Wernberg et al., 2018)
or refine emerging scalable kelp restoration tools to further
support kelp forest recovery (Coleman et al., 2020;
Fredriksen et al., 2020).
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