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1.  INTRODUCTION

Ecosystem-based fisheries management requires
general indicators to accurately assess ecosystem
states across space and time (Jennings 2005, Shin et
al. 2005). Size spectra quantify how a property (such
as abundance or biomass) varies with body size in a
community (Rice & Gislason 1996), leading to a vari-
ety of applications. They are readily fitted to simple

body-size data, and have therefore been widely
applied to aquatic ecosystems (e.g. Dulvy et al. 2004,
Daan et al. 2005, Boldt et al. 2012). A new application
involves using size-spectra models and simulated
carbon fluxes from an ocean-biogeochemistry model
to estimate how global benthic communities may
respond to climate change and ocean acidification
(Kelly-Gerreyn et al. 2014, Yool et al. 2017). Size
spectra are considered candidate ‘ecosystem Essential
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ABSTRACT: Size spectra are recommended tools for detecting the response of marine communi-
ties to fishing or to management measures. A size spectrum succinctly describes how a property,
such as abundance or biomass, varies with body size in a community. Required data are often col-
lected in binned form, such as numbers of individuals in 1 cm length bins. Numerous methods
have been employed to fit size spectra, but most give biased estimates when tested on simulated
data, and none account for the data’s bin structure (breakpoints of bins). Here, we used 8 methods
to fit an annual size-spectrum exponent, b, to an example data set (30 yr of the North Sea Interna-
tional Bottom Trawl Survey). The methods gave conflicting conclusions regarding b declining (the
size spectrum steepening) through time, and so any resulting advice to ecosystem managers will
be highly dependent upon the method used. Using simulated data, we showed that ignoring the
bin structure gives biased estimates of b, even for high-resolution data. However, our extended
likelihood method, which explicitly accounts for the bin structure, accurately estimated b and its
confidence intervals, even for coarsely collected data. We developed a novel visualisation method
that accounts for the bin structure and associated uncertainty, provide recommendations concern-
ing different data types and have created an R package (sizeSpectra) to reproduce all results and
encourage use of our methods. This work is also relevant to wider applications where a power-law
distribution (the underlying distribution for a size spectrum) is fitted to binned data.
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Ocean Variables’ for monitoring changes of phyto-
plankton, zooplankton, benthic invertebrates, krill
and fish in the Southern Ocean (Constable et al.
2016).

The slope of the size spectrum is a recommended
ecosystem indicator because of its apparent respon-
siveness to fishing impacts. Piet & Jennings (2005)
tested the response to fishing of 8 potential fish
community indicators and found that only the slope
of the biomass size spectrum reliably detected the
effects of spatial management measures (partial clo-
sure of an area of the North Sea). Jennings & Dulvy
(2005) similarly recommended the use of size spec-
tra to provide surveillance of the status of fish com-
munities. They pointed out difficulties in justifying
reference points (targets to be aimed for and limits
to be avoided), and instead recommended reference
directions that monitor trends in size-spectrum
slopes through time. Such trends are commonly in -
vestigated in size-spectrum studies (e.g. Blanchard
et al. 2005, Boldt et al. 2012). Using 188 plausible
multispecies size-structured fish community models,
Thorpe et al. (2015) found that the slope of the
abundance size spectrum was the most responsive
indicator of the 4 indicators tested. Size-spectra
parameters have been selected by the European
Union as one of several indicators used to evaluate
sea-floor integrity (European Commission 2010, Rice
et al. 2012), and size-spectrum models continue to
be widely applied (e.g. Taniguchi et al. 2014,
Álvarez et al. 2016, Stasko et al. 2016, Mindel et al.
2018, van Gemert & Andersen 2018, Woodson et al.
2018, Zhang et al. 2018, Zhou et al. 2019). Such
applications require consistent calculation methods,
especially when used for providing practical advice
to fisheries (or ecosystem) managers. However, most
commonly employed methods for fitting size spectra
have been shown to give biased estimates and in -
accurate confidence intervals for simulated data
(Edwards et al. 2017), underscoring the need for
close evaluation of methods.

Data used in size-spectra studies are often only
collected in binned form, whereby the ‘bin structure’
(breakpoints of the bins; Monnahan et al. 2016) is
determined during data collection. For example,
Daan et al. (2005) analysed fish lengths collected in
bins of 0.5, 1 and 5 cm widths. For benthic inver -
tebrates in the North Sea, Maxwell & Jennings
(2006) sorted individuals into sixteen log2 body-
mass bins, resulting in counts and total biomass for
each bin. Similarly, in underwater visual surveys,
fish lengths might be recorded to the nearest 1 cm
(McCoy et al. 2016) or 5 cm (Richards et al. 2011),

generating size-frequency data of counts per length
bin. For historical data, digitisation of points from a
published figure may be all that is available, in
which case the bin structure would have to be alge-
braically determined (e.g. Edwards 2011 in a related
context).

Alternatively, data are sometimes binned during
analysis. For example, Dulvy et al. (2004) and Boldt
et al. (2012) binned data into 5 cm length bins
to calculate size spectra for fish communities in Fiji
and the eastern Bering Sea, respectively. Also,
some size-spectra calculation methods require
binning of data to a prescribed resolution (Edwards
et al. 2017).

Here, we investigate how the bin structure of data
affects the fitting of size spectra, and whether the bin
structure needs to be explicitly accounted for. To
motivate our work and understand issues that can
arise when fitting size spectra to a complex binned
data set, we first apply 8 existing methods to fit
annual size spectra to 30 yr of data from the North
Sea International Bottom Trawl Survey (IBTS). The
data consist of the numbers of individuals of each
species within each length bin that were caught per
hour of trawling. We use the IBTS data set as an
example data set for several reasons: (1) it is an open-
access data set downloadable from the International
Council for the Exploration of the Sea (ICES) website,
(2) it is an extensive quality-controlled data set con-
sisting of many species across multiple years, (3) we
could use the data-processing protocols that were
fully described by Fung et al. (2012) for their calcula-
tion of the Large Fish Indicator, and (4) we could use
the species-specific length−weight coefficients col-
lated by Fung et al. (2012).

For each year of data, we estimate the size-spec-
trum exponent, b. Explicitly, this is the exponent of
the individual size distribution (ISD) and is related to
the slope of the size spectrum (White et al. 2007,
Edwards et al. 2017). We find that 5 methods esti-
mate a significant declining trend in b, correspon-
ding to a steepening size spectrum (as can be ex -
pected from fishing pressure; e.g. Rice & Gislason
1996, Daan et al. 2005). The remaining 3 methods
find no significant trend in b. Thus, the ecological
conclusions differ depending on the method used.

However, none of the methods properly take into
account the bin structure of the data. They implicitly
assign a single length to all counts within a length
bin, rather than acknowledging that counts can rep-
resent a range of values within the length bin. The
binned lengths are subsequently converted to body
masses through species-specific length−weight rela-
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tionships. We illustrate the problems that occur,
which are compounded due to most of the methods
requiring further binning to estimate b. This moti-
vates investigation of methods to properly account
for the bin structure.

The likelihood method is the only method that can
be extended to properly deal with binned data. We
therefore develop and test such an extended method,
which deals with (1) the bin structure of length or
body-mass data and (2) situations giving non-integer
counts of fish. The latter occurs because the counts
(for the IBTS data) are standardised to represent the
number of fish caught per hour of trawling, and also
arises with other types of data (e.g. Richards et al.
2011). Using simulated body-mass data, we find that
applying likelihood without taking into account the
bin structure of the data yields biased estimates of b,
even for high-resolution data. However, the
extended likelihood method that takes into account
the bin structure is accurate even for low-resolution
data. Hence, it may not be worth the effort and
expense of collecting high-resolution data if the bin
structure is not accounted for.

We derive the likelihood function that fully accounts
for species-specific length−weight relationships. This
allows the bin structure for length data to be properly
accounted for when converting lengths to weights.
Applying this function to the IBTS data, we find con-
sistently greater (i.e. less negative) estimates of b
than for the original likelihood method. Finally, we
develop a new method for plotting such data and the
resulting ISD that explicitly accounts for the bin
structure and associated uncertainty.

Our results strengthen and extend those from
Edwards et al. (2017), where we recommended the
use of maximum likelihood estimation over the 7
other previous methods based on simulated (rather
than real) data. Here, only the likelihood method can
be properly extended to deal with the uncertainty
associated with binned data.

We finish with recommendations concerning
which version of the likelihood method to use for
particular types of data. To encourage and enable
others to im plement our methods, we provide fully
documented and functionalised R code in a new R
package, ‘sizeSpectra’. It includes instructions and
vignettes for reproducing all our results, figures
and tables (including those in Edwards et al. 2017),
and for applying our methods to new data. It is
available in Supplement 2 at www. int-res. com/
articles/ suppl/ m636 p019 _ supp/ or can be in stalled
directly from https://github.com/andrew-edwards/
sizeSpectra.

2.  MATERIALS AND METHODS

2.1.  Demersal fish data

For our example data set, we obtained data col-
lected by the North Sea IBTS from the ICES online
Database of Trawl Surveys (www.ices.dk/marine-
data/ data-portals/Pages/DATRAS.aspx). We down-
loaded the number of organisms caught per hour for
each species and length class for all surveys in Areas
1−7 carried out in Quarter 1 from 1986−2015 (see
Supplement 1 for full details). All surveys followed
standardized gear- and data-collection protocols (ICES
2015). We followed Fung et al. (2012) in removing all
non-demersal fish. During surveys, lengths were
recorded as rounded down to the nearest 1 cm (or
0.5 cm for Atlantic herring Clupea harengus and
 European sprat Sprattus sprattus). We averaged
counts of the same year/species/length-class combi-
nation across the 7 areas. For simplicity, this ignores
po tential differences in sampling effort due to varia-
tions in haul duration, trawl speed and net area, and
fits a common size spectrum for the whole region.

For each species, s, the length−weight relationship is

w = αsl βs, (1)

where w is the estimated body mass (g) of an individ-
ual, l is the known body length (cm), and αs and βs

are species-specific parameters published by Fung et
al. (2012). Following Fung et al. (2012), for l we ini-
tially use the ‘length class’ value (see Table 1 for
examples), which represents the minimum of possi-
ble lengths for a given fish (i.e. a length class of 35 cm
represents fish in the range 35−36 cm). This is consis-
tent with, for example, Blanchard et al. (2005) and
Daan et al. (2005), the latter also doing this for 5 and
10 cm length bins. For example, a 45 cm smallspotted
catshark is assigned a calculated body mass of αsl βs

= 0.0031 × 453.0290 = 315.46 g (first row of Table 1). In
1986 there were 0.00714 individuals h−1 of such fish
caught, resulting in a total biomass per hour of trawl-
ing of 2.25 g h−1 (Table 1).

Following calculations of size spectra for earlier
IBTS data (Piet & Jennings 2005) and Celtic Sea
groundfish surveys (Blanchard et al. 2005), we remove
all resulting body masses estimated to be <4 g,
because small fish will not be effectively sampled by
the gear. The resulting data set (Table 1) contains the
required information to estimate b of the community
for each year. It consists of a data frame with 42 298
rows, where each row is a unique combination of year,
species and length class. Each year has between 57
and 81 unique species.
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2.2.  Individual size distribution

We designate the random variable X to represent
the mass (g) of an individual fish or other organism.
Then, considering X to come from a bounded power-
law (PLB) distribution (also called a truncated
Pareto distribution), the probability density func-
tion for X is

(2)

where

(3)

x represents possible values of X, b is the size-spec-
trum exponent, log is the natural logarithm, and xmin

and xmax are the minimum and maximum possible
values of the data with 0 < xmin < xmax (Edwards et al.
2017). The exponent b is ex pected to be negative,
and is the quantity of interest when analysing size
spectra. Eq. (2) is the ISD, and the resulting biomass
size spectrum (biomass density function) for a com-
munity of n individuals is

B(x) = nCxb +1,  xmin ≤ x ≤ xmax. (4)

For length size spectra, x would
represent lengths, but Eq. (4) can-
not be directly used (Edwards et
al. 2017).

2.3.  Estimating b for each year of
the demersal fish data

We apply 8 methods for fitting
size spectra that have been previ-
ously used in publications and in
the R package ‘mizer’ (Scott et al.
2014). The methods were docu-
mented by Edwards et al. (2017).
Here, Supplement 1 ex plains how
the methods need to be adapted to
deal with the fact that the data are
not simply measurements of each
individual fish; full results are also
given. Using each method, we cal-
culate b separately for each year of
data. This gives us a time series of
estimated annual values of b with

confidence intervals, one time series for each method.
We then fit a weighted linear regression (that uses the
confidence intervals) to each time series to see
whether there is a significant change (p < 0.05) in b
through time. For clarity, we now present the results
which then motivate development of further methods.

3.  RESULTS

The linear regression results for each method
(Fig. 1) show that (1) the absolute estimates of b are
highly dependent upon the method used, (2) the
confidence intervals can vary in size through time
and are far broader for some methods than for others,
and (3) there is no significant change in b through
time when using 3 of the methods, yet a significant
negative trend (steepening of the size spectrum)
when using the remaining 5 methods. This latter
point shows that methodological differences can
lead to differing ecological conclusions.

3.1.  Dealing with the bin structure of the data

However, the aforementioned analyses (Fig. 1)
implicitly ignore the fact that using the minimum
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Year    Species                            Length   Number     αs           βs         Body    Biomass
                                                  class (cm)    (h−1)                                mass (g)   (g h−1)
                                                                                                                                      
1986    Smallspotted catshark       45          0.007    0.0031   3.0290   315.46       2.25
1986    Smallspotted catshark       46          0.007    0.0031   3.0290   337.17       2.41
1986    Smallspotted catshark       50          0.007    0.0031   3.0290   434.05       3.10
1986    Smallspotted catshark       52          0.029    0.0031   3.0290   488.81      14.33
1986    Smallspotted catshark       53          0.011    0.0031   3.0290   517.84       5.65
1986    Smallspotted catshark       54          0.011    0.0031   3.0290   548.00       6.18
...       ...                                           ...              ...           ...           ...            ...             ...

2015    Snakeblenny                      34          0.028    0.0244   2.0439    32.93        0.92
2015    Thickback sole                    8           0.013    0.0080   3.1410     5.49         0.07
2015    Thickback sole                   14          0.039    0.0080   3.1410    31.85        1.24
2015    Thickback sole                   15          0.052    0.0080   3.1410    39.55        2.05
2015    Thickback sole                   16          0.065    0.0080   3.1410    48.44        3.15
2015    Thickback sole                   17          0.013    0.0080   3.1410    58.60        0.76

Table 1. First and last 6 rows of the International Bottom Trawl Survey data to illus-
trate the information available. Each row represents a unique combination of year,
species and length class. ‘Number’ gives the number of individuals per hour of
trawling observed for that combination, and can be non-integer because counts of
individual fish are scaled by tow duration. Fish lengths are assigned into length
classes, where each value is the minimum value of the 1 cm length bin (0.5 cm
length bins for Atlantic herring and European sprat). Parameters αs and βs: length−
weight coefficients for species s from Fung et al. (2012); ‘Body mass’: the resulting
estimated body mass for an individual of that species and length class; ‘Biomass’:
total biomass caught per hour of trawling for each row. Example species are
smallspotted catshark Scyliorhinus canicula, snakeblenny Lumpenus lampretae-
formis and thickback sole Microchirus variegatus. The full data set has 42 298 rows



of a length bin and converting that to a single body
mass does not properly account for the bin structure
of the data (because the assigned length can actu-
ally correspond to any true length within a bin). We
demonstrate this issue using length−weight param-

eters for Eq. (1) for 2 example species considered
by Blanchard et al. (2005), namely αs = 0.0255 and
βs = 2.7643 for lemon sole Microstomus kitt and 
αs = 0.001 and βs = 3.4362 for common ling Molva
molva.
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Fig. 1. For the International Bottom Trawl Survey data, each of 8 methods is used to estimate the size-spectrum exponent b (cir-
cles with 95% confidence intervals as vertical bars) for each year. The fit of a weighted linear regression with 95% confidence
interval is shown in red if the trend can be considered statistically significant from 0 (p < 0.05) and in grey if it cannot be (p ≥
0.05). The y-axes are the same for (d−h). For (g) and (h) the confidence intervals for each year are too narrow to be seen. 

See Supplement 1 for full details of methods and acronym definitions
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Fig. 2 shows how six 5 cm length bins are con-
verted into 6 body-mass bins via Eq. (1). For clarity,
we use length bins of width 5 cm and use the mid-
point of a length bin to calculate the resulting body
mass (note that the IBTS data mostly uses 1 cm bins
and was analysed above using the minima of length
bins rather than midpoints). The resulting body-mass
bins in Fig. 2 are not of equal width because of the
nonlinear nature of the length− weight relationships,
and the body-mass bins differ between species be -
cause of the species- specific length−weight parame-
ters. Such information regarding the body-mass bins
was not explicitly accounted for in the above analy-
ses of the IBTS data; all methods used a body mass
obtained from applying Eq. (1) to the minimum of a
length bin.

Fig. 3 shows the consequence of using the result-
ing body-mass values, converted from the midpoints
of the length bins, when using methods to fit size

spectra that require further binning of the data. For
example, the ‘logarithmic binning to fit biomass size
spectrum’ (LBbiom) and ‘logarithmic binning with
normalisation to fit biomass size spectrum’ (LBN-
biom) methods were used by Jennings & Dulvy
(2005) and Piet & Jennings (2005), respectively, to
calculate trends in size-spectra slopes for earlier
IBTS data. Explicitly shown is the assignment of the
body-mass values into bins with bin breaks of 4, 8,
16, 32, ..., as would be used in the LBbiom and
LBNbiom methods.

For example, consider blue length-bin number 5
that is highlighted in Fig. 2 for lemon sole and covers
the range 30−35 cm. Say there are 20 individual
lemon sole that have lengths in this range. All 20
individuals would be represented by the length
equal to the midpoint of the length bin, namely
32.5 cm, which gets converted to a body-mass value
of 385 g (even though the 20 body masses really lie in

the range 309−473 g). This value of 385 g lies
within the log2 bin that spans 256−512 g (see
Bin 5 in Fig. 3). Therefore, all 20 individuals
are assigned a body mass of 384 g, which is
the midpoint of the log2 bin. Thus, in the
LBbiom and LBNbiom methods, all 20 individ-
uals with body masses in the range 309−473 g
are assigned body masses of 384 g. The uncer-
tainty in the original lengths (which is often
an unavoidable consequence of measure ment
methods) is not explicitly accounted for.

Furthermore, the length range 20−25 cm
(Bin 3 in Figs. 2 & 3) represents fish in the
range 101−187 g. The midpoint of 22.5 cm gets
converted to a body-mass value of 139 g,
which lies within the log2 bin that spans
128−256 g (Fig. 3). All individuals are then
assigned a body mass of 192 g (the midpoint of
the log2 bin), but this is greater than the body
mass of any of the individuals (101−187 g). A
similar undesirable situation occurs for Bin 6
(Fig. 3). None of the remaining bins yield
counts in log2 bins that accurately represent
the original length bins (since there is no rea-
son that they should).

Similar situations also occur for the remain-
ing 4 methods that involve further binning of
data. The ‘logarithmic plotting of one minus
the cumulative distribution’ (LCD) and maxi-
mum likelihood estimate (MLE) methods do
not bin data and so do not suffer from the
extra binning described in Fig. 3, but do suf-
fer from assigning the same body mass to all
individuals in a length bin. It is not clear how
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Fig. 2. Example length−weight relationships (solid curves) for lemon
sole Microstomus kitt and common ling Molva molva, showing how
binned length measurements yield ranges of estimated body
masses. Horizontal bars: 6 example 5 cm length bins, the same bins
for both species. Using the length−weight relationships, these
length bins convert to the body-mass bins shown by the vertical
bars, giving 6 bins of unequal width for each species. The conver-
sion for the 30−35 cm length bin is explicitly shown as dotted lines
for the endpoints and solid lines for the midpoint of 32.5 cm. For
lemon sole, the 30−35 cm bin with midpoint 32.5 cm converts to a
body-mass bin of 309−473 g (values rounded to nearest g for clarity);
for common ling the converted body-mass bin is 119−202 g. Note
that converting the midpoint of 32.5 cm gives respective body
masses of 385 and 157 g, which are slightly less than the respective
midpoints of the new body-mass bins (391 and 161 g) because of the 

nonlinearity of the length−weight relationships
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the LCD method could be extended to account for
the bin structure. The MLE method is the only
method to accurately estimate b and its confidence
intervals for unbinned data (Edwards et al. 2017) —
this motivates our adap tation of the MLE method to
explicitly account for the uncertainty in herent in
binned data.

3.2.  Likelihood methods for binned data

3.2.1.  MLE based on mid-points 

The simplest way to deal with binned data in a
likelihood framework is to just use the midpoints of
the body-mass bins, which we call the ‘MLE based on
mid-points’ (MLEmid) method. If there is, say, a
count of 10 individuals assigned to the bin that spans
the body-mass range 4−8 g, then all 10 individuals
are assumed to have a body mass of 6 g (the mid-
point; though recall that for the IBTS data, we fol-

lowed Fung et al. 2012 in using the minimum value
for all 8 methods, including MLE). In Supplement 1,
we derive the likelihood function for count data in
general and explain how this is used for the MLEmid
method.

3.2.2.  MLE based on binning 

The ‘MLE based on binning’ (MLEbin) method cal-
culates the MLE for b by explicitly accounting for the
fact that each count represent values within its re -
spective size bin. So for 10 individuals in the body-
mass bin 4−8 g, the MLEbin method uses a likelihood
function that explicitly accounts for the uncertainty in
the 10 individual body masses. The body masses can
be anywhere in the range 4−8 g, rather than assum-
ing that they are all 6 g as for the MLEmid method.
The likelihood function for the MLEbin method was
derived as Eqs. (A.70) & (A.75) in Edwards et al.
(2017).
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Fig. 3. Demonstration of how binned body-mass values (blue bars) are assigned to logarithmic size-class bins (black and grey
bars), as occurs for the ‘logarithmic binning to fit biomass size spectrum’ (LBbiom) and ‘logarithmic binning with normalization
to fit biomass size spectrum’ (LBNbiom) methods that prescribe the logarithmic bins. Blue vertical bars: the resulting 6 con-
verted body-mass bins for lemon sole from Fig. 2. Black and grey vertical bars: body-mass bins that have equal width on a log-
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incorrect values (greater than the body mass of any individual within the bin). But such values get used in the LBbiom or 
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3.2.3.  Testing the MLEmid and MLEbin methods
using simulated data

We now simulate data to test the 2 methods. Follow-
ing Edwards et al. (2017), we generate 10 000 simu-
lated data sets, each containing 1000 independent
random numbers (body masses) drawn from the PLB
distribution (Eq. 2) with b = −2, xmin = 1 g and xmax =

1000 g. We bin each simulated data set to represent
the effect of collecting data in a binned form. We then
test how well the MLEmid and MLEbin methods esti-
mate b = −2 only using the information from the binned
data set (i.e. the bin definitions and the count in each
bin), by maximising the appropriate likelihood func-
tion and using the profile likelihood-ratio test (Hilborn
& Mangel 1997) to calculate confidence intervals.

We test 4 binning types. Type
‘Linear 1’ uses bins that all have a
constant bin width of 1 g and that
span the data. The first bin starts at
the in teger below the lowest data
point. Similarly, ‘Linear 5’ and
‘Linear 10’ use bins of constant
widths 5 and 10 g, respectively.
The binning type ‘2k’ refers to bin
widths that double in size, span the
data, and have bin breaks that are
integer powers of 2 (i.e. are at 2k g
where k is an integer, giving bin
breaks at 1, 2, 4, 8, 16, ...).

Fig. 4 shows that the MLEbin
method clearly performs better than
the MLEmid method for all binning
types (the histograms are centered
around the true value of b = −2);
summary statistics are given in Sup-
plement 1. The MLEmid method al-
ways overestimates b, whereas
MLEbin gives roughly the same re -
sults regardless of the binning (with
mean and median estimates of b of
−1.99 or −2.00). Thus, the MLEbin
method removes the bias associated
with the MLEmid method (note that
we cannot formally prove this is al-
ways true as there is no analytical
solution for the MLE of b, but it also
holds for all simulation results in
Supplement 1).

Somewhat surprisingly, the MLE -
mid method is biased even for the
‘Linear 1’ binning type. So, binning
the data using bin breaks of 1, 2,
3, ..., 999, 1000 g and then using
the midpoint of a bin to represent
all counts in that bin in a likeli-
hood context gives a biased esti-
mate of b (99% of the simulations
over-estimated b). This means that
for, say, body-mass data that span
the range 1 g to 1 kg and are
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measured to a resolution of 1 g, ignoring the fact
that the binned data represent values in a range
(i.e. using the MLEmid method) will lead to biased
values of b. The reason for this is the very skewed
nature of the power-law distribution. For example,
for the simulated data set shown in Fig. S.41 in Sup-
plement 1, the bin covering the range 1−2 g has a

count of 528, but 348 (66%) of these values are actu-
ally <1.5 g. The MLEmid method assumes that all
values equal 1.5 g, whereas the MLEbin method, by
definition, accounts for the fact that the values within
a bin are assumed to exhibit a power-law distribution.

For the ‘Linear 10’ binning type, the MLEmid
method performs particularly poorly (Fig. 4e). But,

perhaps unexpectedly, the corre-
sponding MLEbin method in Fig. 4f
leads to accurate estimation of b,
and furthermore has better accu-
racy than the MLEmid method with
the finer ‘Linear 1’ binning type in
Fig. 4a. Therefore, the MLEbin
method outperforms the MLEmid
method, even when it is using data
collected at a coarser resolution (10
vs. 1 g) than the MLEmid method.
This shows that expending addi-
tional time and money to collect
high-resolution data is not worth-
while if the bin structure is unac-
counted for — it is better to collect
low-resolution data and use the
MLEbin method to account for the
bin structure.

The ‘2k’ binning type performs
slightly better than ‘Linear 10’ when
using the MLEbin method (Fig. 4f,h)
because it has higher resolution for
the data-rich lower bins (bin breaks
are 1, 2, 4, 8, ..., compared to 1, 11, 21,
31, ..., for ‘Linear 10’).

The results regarding confidence
intervals (Fig. 5) give a similar
conclusion. For the MLEmid method
and ‘Linear 1’ binning type, only
46% of the 95% confidence inter-
vals contain the true value of b, less
than half of the desired observed
coverage of 95%. The results are
worse as the bin width increases
(‘Linear 5’ and ‘Linear 10’) and for
bin widths that double (‘2k’). How-
ever, the MLEbin gives reliable
confidence intervals (observed cov-
erage of 94 or 95%) regardless of
binning type.

Thus, these results demonstrate
that for binned data the MLEmid
method is inaccurate and the MLE -
bin method should be used, even
for seemingly narrow bins.
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3.2.4.  The MLEbins method: accounting for
species-specific body-mass bins

The IBTS data has species-specific length−weight
relationships such that the body-mass bins are differ-
ent for each species, as occurs for many data sets; e.g.
Mindel et al. (2018) had lengths of 1 cm resolution
that were converted into body masses (and then used
for the LBNbiom method). To account for this, we
extend the MLEbin method to the MLEbins method,
using a multinomial log-likelihood function (Lawless
2003); see Supplement 1 for details.

3.3.  MLEbins method applied to IBTS data

To apply the MLEbins method to the IBTS data,
we first need to calculate species-specific body-
mass bins that result from the species-specific

length−weight coefficients (as for Fig. 2). Fig. 6
shows how the 1 cm (or 0.5 cm) length bins for 45 of
the species get converted to body-mass bins. The
conversions are different for each species because of
the different values of the length−weight coeffi-
cients. Thus, the vertical bars are analogous to those
in Fig. 2. Fig. 6 shows that even though the length
bins are only 1 cm wide, the resulting individual
body-mass bins can be quite large; the widest bin
across all species is 832 g for Atlantic cod Gadus
morhua (see Supplement 1).

In Fig. 7, we introduce a plotting technique that
visualises the binning structure of the data and the fit
of the ISD (from using the MLEbins method). The fit-
ted PLB model shows a reasonable fit to the 1999
data (the red curve passing through the grey rectan-
gles) for body masses <100 g; for larger body masses
the PLB model generally overestimates the numbers
of individuals. This pattern is seen for many of the
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years (see Supplement 1) and may potentially be a
consequence of fishing pressure.

Using the species-specific MLEbins method ap -
plied to each year of the IBTS data, we obtain con-
sistently higher estimates of b than for the original
MLE method (Fig. 8). The differing estimates of b
show that the likelihood method did need to be
properly adapted (the MLEbins method) to deal
with the binned nature of the data. In this case, both
methods conclude that there is no significant tem-
poral trend in b through time (see Supplement 1).
Nevertheless, the results show the potential for dif-
ferent conclusions about community structure to be
reached if the bin structure of data is not properly
considered.

3.4.  Recommendations

In Table 2 we recommend fitting methods based on
the type and resolution of the available data. If data
are available in unbinned form (e.g. Trebilco et al.
2015) then the MLE method can be used, but this still
depends on the accuracy of the raw data. Be cause
unbinned data are essentially (to some resolution)
binned data, given the results in Figs. 4 & 5 we rec-

ommend testing the MLE versus MLEbin method for
the particular bin structure and range of a data set.
Alternatively, one could just use the MLEbin method,
with the bin structure defined by the accuracy of the
measurements. Our methods may need to be tailored
for explicit data sets depending on the survey
design — in Table 2 we give an example concerning
monitoring of Pacific reefs.

4.  DISCUSSION

We analysed a rich 30 yr data set from the North
Sea, and found that ecological conclusions regarding
apparent trends in size-spectra exponents can
depend on the method used to estimate the expo-
nent. Furthermore, the likelihood method needs to
properly account for the binned nature of data (giv-
ing the MLEbin method). Using simulated data, even
for seemingly high-resolution data, the likelihood
method that does not account for the binning (i.e.
the MLEmid method) is biased, whereas MLEbin is
not. For data such as the IBTS data, where lengths
have to be converted to body masses using species-
specific length−weight coefficients, we derived the
MLEbins method to estimate b and developed a

 technique for plotting the data
and the resulting fit.

Following Edwards et al. (2017)
we used a PLB distribution for
the ISD because power laws are
commonly used models for size
spectra (Platt & Denman 1978,
Boudreau & Dickie 1992) and
alternative models of size-struc-
tured predator−prey dynamics
predict that the aggregate com-
munity ISD may indeed be close
to a power law (Andersen &
Beyer 2006). Future work could
focus on relaxing the assump-
tion of a power-law distribution
if other distributions are deemed
feasible (Edwards et al. 2017).
Using a bounded (rather than
unbounded) distribution avoids
extrapolation beyond the range
of the data — this regrettably
prevents estimation of the popu-
lation density of Loch Ness mon-
sters (as per Sheldon & Kerr
1972). Since power-law distribu-
tions have many ap plications in
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ecology (White et al. 2008), our simulation results sug-
gest that bin structure may need to be ac counted for
in other contexts, and that our novel plotting method
(Fig. 7) would be similarly applicable.

Ideally, our methods could be extended to incorpo-
rate estimated uncertainties of the species-specific
length−weight coefficients (see Froese 2006). This
would provide further uncertainty regarding the
body mass associated with each length bin (see
Benoist et al. 2019 for an explicit example from raw
data). However, practical applications could be lim-
ited since published tabulations of length−weight
relationships do not generally include confidence
intervals for the parameters (e.g. Love et al. 2002,
Robinson et al. 2010, Fung et al. 2012).

Following Piet & Jennings (2005) and Blanchard et
al. (2005), we used a (minimum) cutoff of 4 g to ana-
lyse the IBTS data. This was necessarily done by con-
verting the minima of the length bins into species-
specific body-mass bins, and then only using the
resulting bins with minima ≥4 g. For a resulting
body-mass bin of 3−5 g, for example, this approach
removes some individuals ≥4 g, even though we wish
to impose a minimum of 4 g. This may be unavoid-
able, although note that the likelihood function for
the MLEbins method properly assumes no data (rather
than no individuals) <5 g for such a species with low-
est bin 3−5 g (ws,1 = 5 g for this species in Eq. S.18 in
Supplement 1). Also note that we have estimated
xmax separately for each year although it could be set
to a fixed maximum value across all years.

There are techniques available for finding the
value of xmin that gives the best fit of an unbounded
power law (Clauset et al. 2009, Gillespie 2015). But
these are focussed on finding power-law tails (given
the optimum xmin), rather than finding a distribution
that fits the full size range of the sampled community,
which is what is desired when fitting size spectra.
Such techniques would have to be adapted to use our
binned likelihood methods (and to use the bounded
rather than unbounded power-law distribution).
Rather, we recommend that the range of data be
justified from biological and sampling perspectives,
rather than adjusting the range to most closely
resemble a power-law distribution. This is particu-
larly so when comparing fits across multiple years or
locations because xmin should be consistent; e.g.
Robinson et al. (2017) fixed xmin = 20 g for all data sets
from 38 Pacific islands. We re-ran our analyses of the
IBTS data with a cutoff value of 100 g (much higher
than the original 4 g). The exponent b was much
lower for all years, and increased through time rather
than not changing (see Supplement 1). This empha-
sises the need for careful biological consideration of
the cutoff value in such applications.

We have used the IBTS data to motivate develop-
ment of widely applicable methods. We caution
against using our current results for management
purposes concerning the North Sea, because we
have not fully explored assumptions (such as those
just discussed) and have used all the sampled species
rather than only a well-sampled subset (as recom-
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Data type                      Resolution                            Issue                                                   Solution
                                                                                                                                                
Body mass                     Individual body masses      Accuracy of measurements              Simulate data as in Fig. 4 to see if
                                                                                    may require them to be                    MLE method sufficient
                                                                                    considered as bins                             or MLEbin is needed

Body mass                     Individuals assigned to       Data are counts in bins                     Use MLEbin method
                                      common body-mass bins                                                                

Length                           Individual lengths               Lengths have to be converted          Calculate individual body masses
                                                                                    to body masses                                  and proceed as per ‘individual body
                                                                                                                                                masses’

Length                           Individuals assigned to       Resulting converted body-mass         Use MLEbins method
                                      length bins                           bins are species specific

Lengths from under-    Individual lengths               May need to standardise counts      Potential need to adapt MLEbins
water visual census                                                    when combining different survey    likelihood function to account for
(e.g. point counts or                                                   designs (e.g. Heenan et al. 2016);    particular survey design
belt transects)                                                             surveys may cover different sized
                                                                                    areas or count small and large
                                                                                    organisms differently

Table 2. Recommendations for calculating the size-spectrum exponent, b, of the individual size distribution for body masses
(Eq. 2), depending on the type and resolution of the data. MLE: maximum likelihood estimate; MLEbin: MLE based on binning; 

MLEbins: MLE accounting for species-specific body-mass bins
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mended by Jennings & Dulvy 2005). Also, the power
analyses conducted by Jennings & Dulvy (2005) on
earlier IBTS data could be repeated, in particular to
determine the lower cutoff value that would provide
the greatest power to detect trends in b. Note that
Jennings & Dulvy (2005) were restricted to such cut-
offs being powers of 2 because of the use of the
LBbiom method, but this would not be necessary
with the MLEbins method.

Note that the confidence intervals calculated for
the IBTS data from the MLEbins method are not
strictly true confidence intervals, because the com-
monly used unit of ‘numbers of individuals caught
per hour of trawling’ is arbitrary. If numbers were
instead expressed as ‘per day of trawling’, then all
counts would be divided by 24, and the resulting
confidence intervals would be larger than those in
Fig. 8. True confidence intervals could be obtained
by using the absolute numbers of individual fish
caught summed across all areas (rather than num-
bers per hour of trawling averaged across areas); this
should be investigated if conducting further analyses
of such types of data. This would change the width of
the confidence intervals, but not the MLE for b,
which is unaffected by any change in units.

All results, figures and tables presented here are
reproducible in our R package ‘sizeSpectra’. The
code is properly documented and functionalised. The
included vignettes will enable users to fit size spectra
to their own data using our recommended and tested
likelihood methods that properly account for the bin
structure of the data.
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