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S.1 Extended methods and results

S.1.1 Outline

In Section S.1.2 we give further details regarding the International Bottom Trawl Survey (IBTS)

data. In Section S.1.3 we analyse the IBTS data by assuming the ‘Length class’ value to be the

exact length of the fish (as is often done, e.g. Blanchard et al. 2005; Daan et al. 2005), ignoring

the fact that a length class of, say, 35 cm actually represents fish in the range 35-36 cm. We

explain how to extend each of the eight methods for estimating the size-spectrum exponent to

deal with the non-integer counts of the numbers of fish. For the likelihood method we derive the

likelihood function for counts data (Section S.1.4) and show that it is valid for non-integer counts

(Section S.1.5).

We then derive the likelihood function for the MLEbins method, which properly accounts for

the species-specific body-mass bins (Section S.1.6). The other methods cannot be extended in a

similar way.

In Section S.1.7 we show the body-mass bins for the IBTS data for the species not shown in

Figure 6. In Section S.1.8 we develop a method for plotting the data and resulting ISD in a way

that accounts for the bin structure and the uncertainty in the estimate of the exponent b, and show

figures for each year of the IBTS data.

Section S.1.9 gives summary statistics for the main simulation results, plus sensitivity re-

sults from setting a larger minimum body size and not sampling the smallest organisms. In

Section S.1.10 we repeat the analysis of the IBTS data but with a much higher minimum body

size. In Section S.1.11 we show histograms of a simulated data set from a bounded power-law

distribution to illustrate the highly skewed nature of the distribution.

We give details of our R package sizeSpectra in Section S.2, which can be used to repro-

duce all results in this paper and apply the methods to other data. It can also be downloaded

directly from https://github.com/andrew-edwards/sizeSpectra.
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S.1.2 Details of the IBTS data

We obtained data collected by the North Sea IBTS from the ICES online Database of Trawl

Surveys (http://www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx). Seven

countries survey the whole of the North Sea, bounded by the eastern English Channel, northern

continental margin above the Shetland archipelago, the east coast of the UK and the Skagerrak

and Kattegat regions (ICES, 2015). Surveys take place in the first and third quarters of each

year following standardized gear and data collection protocols (ICES, 2015). We downloaded

the number of organisms caught per hour (surveyed catch per unit effort) for each species and

length class for all surveys in Areas 1 to 7 carried out in Quarter 1 from 1986-2015. Following

the protocol of Fung et al. (2012), we restricted the time coverage of the surveys to 1986 on-

wards because these are the years in which standardized fishing gear (the GOV trawl – chalut

à grande ouverture verticale) was deployed on all vessels. We downloaded data as “cpue per

length per haul” in the formats “Exchange Data” and “SMALK”, and applied the classifications

published in Fung et al. (2012) to remove all non-demersal fish. During data collection on sur-

veys, lengths were recorded as rounded down to the nearest 1 cm [or 0.5 cm for Atlantic Herring

(Clupea harengus) and European Sprat (Sprattus sprattus)]. We averaged counts of the same

year/species/length-class combination across the seven areas. For simplicity this ignores poten-

tial differences in sampling effort due to variations in haul duration, trawl speed and net area, and

fits a common size spectrum for the whole region.

S.1.3 Applying eight methods to the IBTS data

We use eight methods that have been previously used to calculate size-spectra slopes or expo-

nents. See Edwards et al. (2017) for full details and example references for each method. Briefly,

the methods are:

• Llin (Log-linear transform) – plot linearly binned data on log-linear axes then fit regression

of log(count in bin) against midpoint of bin;
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• LT (log transform) – plot linearly binned data on log-log axes then fit regression of log(count

in bin) against log(midpoint of bin);

• LTplus1 (log transform plus 1) – plot linearly binned data on log10-log10 axes then fit

regression of log10(count+1) against log10(midpoint of bin);

• LBmiz (logarithmic binning as done in the R package mizer by Scott et al. 2014) – bin

data using log10 bins, but with largest bin the same arithmetic size as the penultimate bin,

then fit regression of log(count in bin) against log(lower bound of bin);

• LBbiom (logarithmic binning) and then fit biomass size spectrum – bin body masses using

log2 bins then fit regression of log10(biomass in bin) against log10(midpoint of bin);

• LBNbiom (logarithmic binning with normalisation and then fit biomass size spectrum) –

bin body masses using log2 bins, then fit regression of log10 (biomass in bin divided by bin

width) against log10(midpoint of bin);

• LCD (logarithmic plotting of 1−F(x); i.e. one minus the cumulative distribution) – rank

data from largest (rank 1) to smallest (rank n) and fit regression of log(rank(x)/n) against

log x;

• MLE (maximum likelihood estimate) – calculate maximum likelihood estimate of b.

Using each method we calculate the size-spectra exponent b separately for each year of data.

As in Table 1 (following Fung et al. 2012) we use the ‘Length class’ values (the minimum of

each length bin) to calculate body masses associated with the numbers of individuals. Although

some methods use counts of individuals and some use biomass, they are related through (2) and

(4) and hence can estimate b (Edwards et al., 2017). This gives us a time series of estimated

annual values of b with confidence intervals, one time series for each method. We then fit a

weighted linear regression (that uses the confidence intervals – see below) to each time series to

see whether there is a significant change (p < 0.05) in b through time.
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However, the eight methods first have to be extended to deal with the non-integer counts of

numbers of fish of each body mass. For the binning-based methods (Llin, LT, LTplus1, LBmiz,

LBbiom and LBNbiom) the extension is fairly obvious. The bins used to fit the size spectra are

defined by the method. Each count of a particular body mass (each row in Table 1) is assigned

to a bin that is defined by the method being used, and (for each year) the total count in each

body-mass bin is calculated by summing the ‘Number’ values for that bin. The resulting total

count in each body-mass bin no longer has to be an integer (because the ‘Number’ values are not

integers), but the resulting regression fits can be calculated as described by Edwards et al. (2017).

The LCD method requires ranking the body mass, x, of each individual fish in descending

order from 1 (largest) to n (smallest) and then fitting a regression of log(fraction of values ≥ x)

against log x. However, for the IBTS data the body masses do not correspond to individual fish,

rather we have the number of fish of a certain body mass – but that number can be non-integer.

We use the simplest approach to adapt the LCD method. First, for a particular year arrange

the data (‘Number’ for each body mass from Table 1) in descending order of body mass, and

for each row calculate the cumulative sum of the ‘Number’ – this is akin to assigning ranks for

individual body masses. Dividing the cumulative sum by the total ‘Number’, gives the fraction

of individuals with a body mass ≥ x for each given body mass, x. Then plot log(proportion of

values ≥ x) against log x and fit a regression, as per Figure 2(g) of Edwards et al. (2017). Each

plotted point no longer corresponds to an individual fish, but relates to a row in Table 1.

The original MLE method of Edwards et al. (2017) requires the body mass of individual fish,

and so in Sections S.1.4 and S.1.5 we formally extend it to deal with count data.

So we calculate the estimated b for each of the 30 years of data, using each of the eight

methods. For each method, we plot the resulting time series of estimates of b and analyse any

trend by fitting a weighted linear regression to the estimates. A weighted regression is used be-

cause we can estimate the variances as the square of the standard errors from regression outputs,

and the variances appear to vary over time. For the MLE method, having already calculated the
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Table S.1: Results of weighted regression analyses of trend through time of the estimated expo-
nent b for the IBTS data, as estimated using each of the eight methods shown in Figure 1, plus the
MLEbins method developed here. ‘Trend’ is the estimated annual trend, with 95% confidence
intervals given by ‘Low’ and ‘High’, p is the p-value for the probability that the trend is signif-
icantly different to 0, and R2 is the coefficient of determination. If p ≥ 0.05 then the trend can
be considered not significantly different to 0. If p < 0.05 then a negative trend indicates a statis-
tically significant decline in the exponent over time, and a positive trend indicates a statistically
significant increase.

Method Low Trend High p R2

Llin -0.0000 -0.0000 -0.0000 0.01 0.19
LT -0.0313 0.0052 0.0417 0.77 0.00
LTplus1 -0.0206 0.0058 0.0321 0.66 0.01
LBmiz -0.0060 -0.0034 -0.0009 0.01 0.21
LBbiom -0.0076 -0.0042 -0.0008 0.02 0.19
LBNbiom -0.0076 -0.0042 -0.0008 0.02 0.19
LCD -0.0057 -0.0030 -0.0002 0.04 0.15
MLE -0.0047 -0.0010 0.0027 0.60 0.01
MLEbins -0.0043 -0.0010 0.0024 0.56 0.01

95% confidence intervals (blow,bhigh) using the profile likelihood method Hilborn and Mangel

(1997), the standard error, γ , can be calculated from the confidence interval being approximately

bMLE±1.96γ where bMLE is the MLE for b (Burnham and Anderson, 2002). Explicitly, we used

the mean

γ =
|blow−bMLE|+ |bhigh−bMLE|

2×1.96
=

bhigh−blow

2×1.96
. (S.1)

Figure 1 and Table S.1 shows that the absolute estimates of b are highly dependent upon the

method used. The confidence intervals are somewhat narrower (≤0.002) in absolute size for the

Llin and MLE methods than those for the other methods (≥0.005), and vary in size through time.

There is no significant change in b when using three of the estimation methods (LT, LTplus1

and MLE), yet a significant decline when using the remaining five methods. Thus, five methods

imply a steepening of the size spectrum over time, whereas three methods imply no change. This

demonstrates how methodological differences can lead to differing ecological conclusions.
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S.1.4 Likelihood function for count data

Here we derive the likelihood function for count data, that is then shown in Section S.1.5 to apply

to non-integer counts. The latter was used for the MLE method (that ignores the bin structure)

for the IBTS data.

From Edwards et al. (2017), the log-likelihood function for the PLB model for b 6=−1 is

log[L(b|data x)] =
n

∑
j=1

log f (x j) (S.2)

= n log

(
b+1

x b+1
max − x b+1

min

)
+b

n

∑
j=1

logx j, (S.3)

where L(b|data x) is the likelihood of a particular value of the unknown parameter b given the

known data x = {x1,x2,x3, ...,xn}, and f (·) is the probability density function (2). The maximum

likelihood estimates for xmin and xmax are simply the minimum and maximum values of the data.

Now, if some of the x j are repeated values, we can represent the data in a more concise form.

For example, the data set x= {4,6,6,6,9,10,10} can be represented as counts {1,3,1,2} for each

of the unique x values {4,6,9,10}. More generally, let ck be the count (number of repetitions)

of x′k, where k = 1,2,3, ...,K ≤ n, and ∑
K
k=1 ck = n. The vector x′ = {x′k} represents the unique

values of the original x j, and K = n only when all ck = 1 (i.e. the original x j values are all unique).

To obtain the log-likelihood function, note that

n

∑
j=1

log f (x j) =
K

∑
k=1

ck log f (x′k), (S.4)

because if x j is repeated ck times then the corresponding contribution of the x j values to the

overall ∑ log f (x j) is just ck log f (x′k) with x′k = x j. Hence, the equivalent log-likelihood function

to (S.3) is

log[L(b|data x′)] =
K

∑
k=1

ck log f (x′k) (S.5)

= n log

(
b+1

x b+1
max − x b+1

min

)
+b

K

∑
k=1

ck logx′k. (S.6)
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Similarly, for b =−1 the log-likelihood function is

log[L(b =−1|data x′)] =−n log(logxmax− logxmin)−
K

∑
k=1

ck logx′k. (S.7)

Note that if a value x j is repeated because it represents a value that is rounded due to the

resolution of the measurement process, (e.g. x j = 10 g really represents a value in the range

9.5− 10.5 g and then occurs multiple times in the data set) then the MLEbin method should be

used (Edwards et al., 2017). If the values {x j} each represent true discrete measurements, then

the continuous power-law distribution (2) is not appropriate and a discrete distribution should be

used. But for length and weight measurements used for size spectra, the underlying variables are

indeed continuous, and any discrete values are due to measurement resolution.

S.1.5 Likelihood function for data with non-integer counts

For the IBTS data, the counts ck corresponding to each body mass x′k are not all integers – they

can take non-integer values. The duration of individual research trawls was not constant. So

the integer counts of the number of a particular species of fish within a particular length bin

from a particular trawl needed to be divided by that trawl’s duration, to give the number of fish

per hour within each length bin. This standardised the unit of measurement across trawls of

different duration. The resulting counts per hour, ck, are therefore not restricted to being integers.

Similarly, Daan et al. (2005) analysed bottom-trawl survey data that were ‘catch in number by

size or Lmax [maximum length] class per hour fishing’ that resulted in non-integer counts, as did

Blanchard et al. (2005) in their analysis of groundfish surveys from the Celtic Sea.

We ascertain that the above likelihood functions (S.6) and (S.7) can still be applied to data

containing non-integer counts. In the above derivations, each count ck of the number of fish of

size x′k was assumed to be integer-valued. But we now show that this condition can be relaxed,

and therefore allow each ck to be non-integer. If ck are non-integer then they can be scaled by

a constant factor z to give counts c′k = zck such that all the c′k are integers. Using c′k in place of

ck and n′ = zn in place of n simply multiplies the log-likelihood function in (S.6) by a constant
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z, which does not change the location of its maximum. Hence, using non-integer densities ck in

(S.6) gives the same MLE for b as scaling the densities up to integer values.

However, any such rescaling, by multiplying (S.6) by z, changes the curvature of the log-

likelihood function, and so changes the width of the resulting confidence interval. This is because

the interval is calculated using the profile likelihood-ratio test as the range of parameters for

which the log-likelihood is within 1.92 of the maximum value of the log-likelihood (page 163

of Hilborn and Mangel 1997). The 1.92 is based on a chi-squared distribution with one degree

of freedom (and is more precisely calculated as qchisq(0.95,1)/2 in our R code), and is an

absolute value that does not change when the log-likelihood function is scaled by z.

Thus, calculated confidence intervals will depend on the units of the counts – changing the

counts of fish in the IBTS data from numbers per hour of trawling to numbers per day of trawling

will change the confidence intervals of b (but not the MLEs). An analogy is tossing 10 identical

(but unfair) coins and getting 7 heads and 3 tails (the MLE for the probability of getting a head is

0.7, but with a wide confidence interval), compared to tossing 1,000 coins and getting 700 heads

and 300 tails (the MLE is still 0.7, but the uncertainty will be much narrower given the larger

sample size).

Note that the units of measurement (g vs. kg) will not affect the MLEs or the confidence

intervals as this change only adds a constant value to the log-likelihood function.

S.1.6 Likelihood function for the MLEbins method

Here we derive the likelihood function for the MLEbins method. This extends the MLEbin

method for when the body-mass bins are not defined the same for all species. This occurs for

the IBTS data because the counts in the 1-cm (or 0.5-cm) length bins yield counts in body-mass

bins via length-weight relationships. Since the length-weight relationships are species-specific,

the resulting body-mass bins are species-specific, as shown in Figures 6 and S.1-S.3.

We extend and generalise the MLEbin method derived in Edwards et al. (2017), which in
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turn extended the methods from Edwards et al. (2007) and Edwards (2011) for binned movement

data. The aim is to obtain the likelihood functions to calculate the maximum likelihood estimate

for the exponent b in (2). The MLEbin method in Edwards et al. (2017) assumed that all data

were binned using the same binning protocol, such that there is just one set of bin breaks that

gives the breakpoints between the bins. Here we relax that assumption to allow for species-

specific bin breaks, as occurs when converting binned length data into binned body-mass data

using species-specific length-weight relationships.

Consider the data to consist of counts, ds j, of the number of individuals of species s that are

in each size bin j = 1,2,3, ...,Js, where Js is the index of the final bin for species s, and there are

S species labelled s = 1,2,3, ...,S.

Let bin j cover the values of x (which could be weight, or length for fitting a length size

spectrum) in the interval [ws j,ws, j+1), such that ws1,ws2, ...,ws,Js+1 define the bin breaks. For

example, for species s = 3, bin j = 5 goes from w3,5 to w3,6. [In terms such as ws j the s and j

are indices; we include commas where necessary to avoid ambiguity, such as ws, j+1 and w3,6].

For bin j = Js the interval is [wsJs,ws,Js+1], which includes the upper bound. The sample size

(total number of counts) for species s is ns = ∑
Js
j=1 ds j, and the overall total number of counts

is n = ∑
S
s=1 ns. We assume that, for each species, the first and last bins each have at least one

individual in them (i.e. ds,1,ds,Js > 0).

Similar calculations to those by Edwards et al. (2012) for unbinned data show that the known

min{ws1}S
s=1 and max{ws,Js+1}S

s=1 are the maximum likelihood estimates for xmin and xmax, re-

spectively. So xmin and xmax can be set to their respective maximum likelihood estimates, and we

now only need to calculate the maximum likelihood estimate of b to fully specify the ISD (2).

The probability that the body size of an individual lies within the range [ws j,ws, j+1) is simply
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(assume for now that b 6=−1)

P
(
individual has body size in [ws j,ws, j+1)|b

)
=

∫ ws, j+1

ws j

Cxbdx (S.8)

=
C

b+1

[
xb+1

]ws, j+1

ws j
(S.9)

=
C

b+1

(
wb+1

s, j+1−wb+1
s j

)
, (S.10)

=
����(b+1)

(
wb+1

s, j+1−wb+1
s j

)
����(b+1)(xb+1

max− xb+1
min )

, (S.11)

=
wb+1

s, j+1−wb+1
s j

xb+1
max− xb+1

min

. (S.12)

The individual can be from any species (not necessarily species s).

Recall that the ws j are all known, since they are the species-specific bin breaks. Thus the only

unknown in (S.12) is b. The remaining known quantities are the counts, ds j, of the number of

individuals of species s that are in each bin [ws j,ws, j+1).

Given these counts, we develop a multinomial log-likelihood function (Lawless, 2003) as

follows. The log-likelihood function for the parameter b (the only unknown), given the counts

{ds j}Js
j=1 corresponding to bin breaks {ws j}Js+1

j=1 for each species s = 1,2,3, ...,S, is

l(b|{ds j},{ws j}) = log

[
S

∏
s=1

Js

∏
j=1

(
P(individual has body size in [ws j,ws, j+1)|b)

)ds j

]
(S.13)

=
S

∑
s=1

Js

∑
j=1

ds j log
(

P(individual has body size in [ws j,ws, j+1)|b)
)

(S.14)

=
S

∑
s=1

Js

∑
j=1

ds j log

(
wb+1

s, j+1−wb+1
s j

xb+1
max− xb+1

min

)
(S.15)

=
S

∑
s=1

Js

∑
j=1

ds j

(
log
∣∣∣wb+1

s, j+1−wb+1
s j

∣∣∣− log
∣∣∣xb+1

max− xb+1
min

∣∣∣) (S.16)

= − log
∣∣∣xb+1

max− xb+1
min

∣∣∣ S

∑
s=1

Js

∑
j=1

ds j +
S

∑
s=1

Js

∑
j=1

ds j log
∣∣∣wb+1

s, j+1−wb+1
s j

∣∣∣ (S.17)

= −n log
∣∣∣xb+1

max− xb+1
min

∣∣∣+ S

∑
s=1

Js

∑
j=1

ds j log
∣∣∣wb+1

s, j+1−wb+1
s j

∣∣∣ . (S.18)
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The two terms inside the absolute symbols | · |, i.e. wb+1
s, j+1−wb+1

s j and xb+1
max − xb+1

min , are both

positive for b < −1 and both negative for b > −1 (because ws, j+1 > ws j and xmax > xmin by

definition), such that taking their absolute values ensures that (S.15) and (S.16) are equivalent.

Equation (S.18) is analogous to (A.70) in the Appendix of Edwards et al. (2017) for which the

data have a single non-species-specific set of bin breaks, but extended here to account for the

species-specific bin breaks. It cannot be analytically solved to give the maximum likelihood

estimate of b (by differentiating with respect to b and setting to 0), and so numerical methods are

required. It is formulated in the function negLL.PLB.bins.species() in our sizeSpectra R

package.

Note that (S.13) necessarily assumes that individual body sizes are independently distributed,

which may be an assumption that could be investigated in later work. However, we have not had

to make any assumptions about the distribution of body sizes within each species, only about the

community-level ISD.

For the case where b = −1, we have C = 1/(logxmax− logxmin) from (3) and, analogous to

(S.12) we have

P
(
individual has body size in [ws j,ws, j+1)|b =−1

)
=

∫ ws, j+1

ws j

Cx−1dx (S.19)

= C
[
logx

]ws, j+1

ws j
(S.20)

=
logws, j+1− logws j

logxmax− logxmin
. (S.21)
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Analogous to (S.14), the log-likelihood function is then just

l(b =−1|{ds j},{ws j}) =
S

∑
s=1

Js

∑
j=1

ds j log
(

P
(
individual has body size in [ws j,ws, j+1)|b =−1

))
(S.22)

=
S

∑
s=1

Js

∑
j=1

ds j log
(

logws, j+1− logws j

logxmax− logxmin

)
(S.23)

=
S

∑
s=1

[
Js

∑
j=1

ds j

(
log
(
logws, j+1− logws j

)
− log(logxmax− logxmin)

)]
(S.24)

= − log(logxmax− logxmin)
S

∑
s=1

Js

∑
j=1

ds j +
S

∑
s=1

Js

∑
j=1

ds j log
(
logws, j+1− logws j

)
(S.25)

= −n log(logxmax− logxmin)+
S

∑
s=1

Js

∑
j=1

ds j log
(
logws, j+1− logws j

)
.

(S.26)

Note that the equivalent single-species equation (A.75) in Edwards et al. (2017) was incor-

rect – it contained the log terms that results from integrating x−1, but not the log term resulting

from taking the log-likelihood. The correct equation is

l(b =−1|data) = −n log(logwJ+1− logw1)+
J

∑
j=1

d j log(logw j+1− logw j). (S.27)

This is equivalent to (S.26) with S = 1 and dropping the s subscript (and replacing xmin and

xmax by their maximum likelihood estimates of w1 and wJ+1, respectively). This error does not

occur in the sizeSpectra package (which is the easiest way to use the code now), and, for com-

pleteness, has been corrected in the negLL.PLB.binned() function in PLBfunctions.r in the

GitHub code repository associated with Edwards et al. (2017), and is documented there as Issue 7

at https://github.com/andrew-edwards/fitting-size-spectra/issues/7 – thank you

to Philip Wallhead (Norwegian Institute for Water Research, pers. comm.) who independently

noticed this error and that we had not originally fully corrected it. In practice this error is very

unlikely to matter, as it will only occur when the log-likelihood function negLL.PLB.binned()
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is called for a value of precisely b = −1, which is unlikely to occur (due to machine preci-

sion) when, for example, minimising the negative log-likelihood function. This omission did

not occur for the unbinned data (equation (A.11) in Edwards et al. 2017), as can be seen by the

log( log(xmax) - log(xmin) ) term in the function negLL.PLB() in PLBfunctions.r.

S.1.6.1 Non-integer counts

We have assumed in (S.13) that the counts {ds j} are integer valued. However, using the same

argument developed for (S.4) and (S.6) we contend that this assumption can be relaxed, i.e. that

the {ds j} can take non-integer values. This is what we have for the IBTS data, since the counts

are counts per hour of trawling (so that the data are standardised). For example, if three indi-

vidual Atlantic Cod whose size falls in bin j are caught during a trawl of 17 minutes, then the

standardisation yields a count ds j = 3× 17/60 = 0.85 which is non-integer. Averaging counts

per hour across areas also generates non-integer counts.

Our approach (and R code) is applicable to any data set that has species-specific bin breaks. It

can be used directly for length data or for body-mass data. For the IBTS data, calculations of the

individual size distribution based on lengths (the length size spectrum), rather than body masses,

would still require this approach because two of the species (herring and sprat) used 0.5-cm bins,

compared to 1-cm bins for all the others. In practice, to simplify the numerical computations, the

analysis could just consider two pseudo-species, s = 1 representing all species for which 1-cm

bins were used (and the counts within each length bin just summed across all such species), and

s = 2 for the 0.5-cm species (herring and sprat).

S.1.7 Resulting body-mass bins for IBTS data

Figures S.1 and S.2 show the equivalent of Figure 6 for the remaining 90 species of the IBTS

data (and Figure S.3 shows an enlargement of part of Figure S.2).

The body-mass bin with the biggest ratio of its width to its lower bound occurs for the Black-

14



belly Rosefish (Helicolenus dactylopterus) which is species code 127251, indicated by × in Fig-

ure S.3. The bin goes from 10.29 g to 20.31 g, such that the ratio of bin-width to the lower bound

is 0.97 (though this is hard to see in Figure S.3). Consequently, in our earlier eight-methods anal-

ysis that did not account for the bin structure, all individuals of this species with a body-length

of 4-5 cm would get assigned a body length of 4 cm, and consequently a body mass of 10.29 g.

However, the true possible range of body masses is 10.29-20.31 g. Thus, individuals at the upper

end of this range would be assigned body masses of about half of their actual body mass.

A similar effect occurs for all body masses in the data set. This systematic rounding down of

body masses impacts all the methods except for the MLEbins method that explicitly accounts for

the bin structure.

The widest resulting body-mass bin occurs for Atlantic Cod (Gadus morhua), which is species

code 126436, the rightmost species in Figure S.2. The widest bin goes from 35.630 kg to

36.462 kg, with a width of 832 g.
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Figure S.1: As for Figure 6 but for the next 45 species – note the different vertical axis scale from
Figure 6.
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Figure S.2: As for Figure 6 but for the final 45 species – note the different vertical axis scale
from Figure 6. If the figure is rotated 90◦ clockwise it is somewhat characteristic of a bounded
power-law distribution, with a very few species growing much larger than the remaining species.
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Figure S.3: As for Figure S.2 but just for species with maximum body mass up to 10 kg to more
clearly show their body-mass bins. The× for species code 127251 indicates Blackbelly Rosefish
(Helicolenus dactylopterus) which has the body-mass bin with the largest ratio of width to lower
bound (see text).
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S.1.8 Plotting the IBTS data and the resulting PLB fit for each year

Having accounted for the species-specific body-mass bins when fitting the ISD to the IBTS data,

we now describe how to plot the data (and resulting fit) in a way that also accounts for the

binning. In Figure 6 of Edwards et al. (2017) we recommended plotting both the biomass size

spectrum (in binned form) and the abundance size spectrum. However, since the biomass size

spectrum requires further binning (which is problematic, as shown in Figure 3) here we focus on

the abundance size spectrum.

For unbinned data, in Edwards et al. (2017) we suggested plotting the abundance size spec-

trum by ranking the body mass, x, of each individual fish in descending order from 1 (largest) to n

(smallest), and plotting log(number of values ≥ x) against log x for each individual body mass x.

The fitted ISD is then plotted as (1−F(x))n, where F(x) is the cumulative distribution function

F(x) =


xb+1− x b+1

min

x b+1
max − x b+1

min

, b 6=−1

log(x/xmin)

log(xmax/xmin)
, b =−1,

(S.28)

and n is the total sample size.

For the binned IBTS data, we first try defining the body sizes using the minimum body mass

for each of the bins. For bin j for species s the minimum body mass is, by definition, ws j. We

use Ds j to represent the equivalent to the unbinned ‘number of values ≥ x’ , and define it as the

total number of counts in all the bins that have minimum body mass ≥ ws j:

Ds j = ∑
s′ j′ with ws′ j′≥ws j

ds′ j′. (S.29)

The summation is over combinations of s′ and j′ that satisfy ws′ j′ ≥ ws j. We can then account

for the range of body masses in each bin by plotting a horizontal line from ws j to ws, j+1, i.e.

showing the range of each bin, on the x-axis, and Ds j on the y-axis; these are shown as the green

horizontal bars in Figure 7 for the 1999 data.
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However, we have overlapping bins (because of the species-specific length-weight relation-

ships), but have calculated Ds j based only on the ranking of the minima of each bin. Only using

the minima implies, for example, that a bin with range 20-22 g would be designated as containing

individuals larger than a bin with range 19-25 g, even though the latter bin can contain individuals

larger (e.g. of mass 24 g) than the former bin. And bins may overlap without one fully encom-

passing the other, such that using the minima means that a bin with range 30-35 g is considered

to always contain individuals larger than a bin with range 29-34 g, even though the latter bin can

again contain individuals larger than some in the former bin.

We account for such possibilities by calculating, for bin s j, the range [Es j1,Es j2], where

Es j1 = ∑
s′ j′ with ws′ j′≥ws, j+1

ds′ j′, (S.30)

Es j2 = ∑
s′ j′ with ws′, j′+1>ws j

ds′ j′. (S.31)

The low end of the range, Es j1, accounts for bins whose minimum value equals or exceeds the

maximum value of bin s j, i.e. bins with s′ and j′ such that ws′ j′ ≥ ws, j+1, because individuals

in such bins must be larger than (or equal to) those in bin s j as the bins do not overlap (see

Figure S.4, further explained below). The high end of the range, Es j2, accounts for bins whose

maximum value exceeds the minimum value of bin s j, i.e. bins with s′ and j′ such that ws′, j′+1 >

ws j, because individuals in such bins may be larger than those in bin s j as the bins overlap. For

Es j2 we need to use the criteria of >, rather than ≥, to avoid erroneously counting bins whose

maximum value is the minimum value of bin s j.

Figure S.4 shows these calculations for one ‘target’ bin (s= 2, j = 7) and two example species

namely Moustache Sculpin and Snakeblenny (which are highlighted as 127205 and 154675, re-

spectively, in red in Figure 6). The resulting minimum possible number (per hour) of individuals

with body size larger than those in bin s = 2, j = 7 is E2,7,1 = 0.41, and the maximum possible

number is E2,7,2 = 2.71, giving quite a range of possible values.
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Figure S.4: Schematic diagram to explain how we calculate the range of counts of individuals that
are larger than those in a given bin. Red and pink body-mass bins are those for Snakeblenny and
Moustache Sculpin (here labelled species 1 and 2, respectively) from Figure 6. Bin breaks are
denoted by ws, j and the number inside each bin is the number observed per hour of trawling. For
illustration the data are combined across all years and only bins with minima > 15 g are shown.
The target bin has s = 2 and j = 7 and therefore has bin breaks w2,7 and w2,8 and is indicated
by the vertical grey lines. The first letter in each pair (‘NN’, ‘NY’, or ‘YY’) denotes whether or
not each bin is included in the low count E2,7,1, i.e. its lower bound is ≥ the upper bound of the
target bin. Similarly, the second letter denotes whether or not each bin is included in the high
count E2,7,2, i.e. its upper bound is > the lower bound of the target bin. Summing the respective
counts as per (S.30) [first letter is ‘Y’] and (S.31) [second letter is ‘Y’] gives E2,7,1 = 0.41 and
E2,7,2 = 2.71.
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For the full data set for a particular year, similar calculations are done for each combination

of s and j (i.e. all bins for all species), to give resulting ranges of counts [Es j1,Es j2]. These are

shown as the vertical span of each grey rectangle in Figures 7 and S.5-S.34 (one figure for each

year). The horizontal span of the rectangle depicts the range of that bin, i.e. [ws j,ws, j+1]. The

figures share a common range for the x-axis.

The fitted curve, using the MLEbins method, is plotted as (1−F(x))n, where the total sample

size is n = ∑
S
s=1 ∑

Js
j=1 ds j. The MLE for b and the low and high values of the 95% confidence

intervals are also shown, but the confidence intervals are fairly narrow and their fits only just

show up on the figures. Table S.2 gives, for each year, the estimated values of xmin, xmax, n, the

MLE of b and its 95% confidence interval, and the normalisation constant C.

Visually, the PLB model seems to fit fairly well (red curve passing through the grey rectan-

gles), at least up to 100 g, for some years (in particular 1986, 1988, 1989, 1992, 1995, 1997,

1999, 2000, 2004, 2006, 2008, 2009, 2010 and 2014). Above 100 g the PLB model generally

overestimates the number of individuals. This could perhaps be indicative of fishing pressure –

ideally we would have data concerning the unfished community to see how well the PLB model

fit such data. Developing a formal statistical test of goodness-of-fit could be a focus of future

work.

As well as no significant trend of b through time (Figure 8), Figures S.5-S.34 show no clear

change in structure through the 30 years of data. For example, there is not a disappearance of

larger fish through time. For providing more rigorous advice to fisheries managers, assumptions

that could be investigated are the use of a minimum cutoff of 4 g (briefly investigated in Sec-

tion S.1.10), and the setting of xmin and xmax to be the span of the data for each year (maybe only

a smaller range is of interest, and may provide a better fit of the PLB model).
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Figure S.5: Individual size distribution and MLEbins fit (red solid curve) with 95% confidence
intervals (red dashed curves) for IBTS data in 1986. The y-axis is linear in (a) and logarithmic
in (b). For each bin, the horizontal green line shows the range of body sizes, with its value on
the y-axis corresponding to the total number of individuals (per hour of trawling) in bins whose
minima are ≥ the bin’s minimum. The vertical span of each grey rectangle shows the possible
range of the number of individuals with body mass ≥ the body mass of individuals in that bin
(horizontal span is the same as for the green lines). The text in (a) gives the year, the MLE for
the size-spectrum exponent b, and the sample size n.
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Figure S.6: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1987. Details as in Figure S.5.
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Figure S.7: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1988. Details as in Figure S.5.
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Figure S.8: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1989. Details as in Figure S.5.
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Figure S.9: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1990. Details as in Figure S.5.
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Figure S.10: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1991. Details as in Figure S.5.
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Figure S.11: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1992. Details as in Figure S.5.
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Figure S.12: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1993. Details as in Figure S.5.
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Figure S.13: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1994. Details as in Figure S.5.
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Figure S.14: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1995. Details as in Figure S.5.
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Figure S.15: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1996. Details as in Figure S.5.
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Figure S.16: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1997. Details as in Figure S.5.
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Figure S.17: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1998. Details as in Figure S.5.
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Figure S.18: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1999. Details as in Figure S.5.
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Figure S.19: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2000. Details as in Figure S.5.
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Figure S.20: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2001. Details as in Figure S.5.
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Figure S.21: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2002. Details as in Figure S.5.
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Figure S.22: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2003. Details as in Figure S.5.
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Figure S.23: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2004. Details as in Figure S.5.
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Figure S.24: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2005. Details as in Figure S.5.
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Figure S.25: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2006. Details as in Figure S.5.
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Figure S.26: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2007. Details as in Figure S.5.
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Figure S.27: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2008. Details as in Figure S.5.
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Figure S.28: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2009. Details as in Figure S.5.
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Figure S.29: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2010. Details as in Figure S.5.
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Figure S.30: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2011. Details as in Figure S.5.
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Figure S.31: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2012. Details as in Figure S.5.
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Figure S.32: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2013. Details as in Figure S.5.
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Figure S.33: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2014. Details as in Figure S.5.
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Figure S.34: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 2015. Details as in Figure S.5.
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Table S.2: Results for each year of the IBTS data from using the MLEbins method. Both xmin

and xmax are calculated as described earlier, n is the total number of individuals per hour, ‘Low’
and ‘High’ give the 95% confidence interval for the maximum likelihood estimate (MLE) of b,
and C is the normalisation constant from (3) based on the MLE of b.

Year xmin xmax n Low MLE of b High C
1986 4.05 28722.51 4799.29 -1.50 -1.49 -1.47 0.97
1987 4.16 25974.17 6202.85 -1.54 -1.53 -1.51 1.12
1988 4.06 29439.75 7711.72 -1.62 -1.60 -1.59 1.41
1989 4.06 35210.99 7667.87 -1.56 -1.55 -1.54 1.20
1990 4.05 34811.19 6399.75 -1.53 -1.52 -1.50 1.07
1991 4.06 26412.52 6639.58 -1.50 -1.49 -1.48 0.99
1992 4.05 25316.66 7973.32 -1.54 -1.53 -1.52 1.12
1993 4.16 29439.75 8628.05 -1.50 -1.49 -1.48 1.00
1994 4.16 22200.90 6282.84 -1.53 -1.52 -1.50 1.10
1995 4.16 31818.64 9401.90 -1.64 -1.62 -1.61 1.52
1996 4.05 36462.12 5607.19 -1.44 -1.42 -1.41 0.78
1997 4.16 19360.99 9113.14 -1.65 -1.63 -1.62 1.58
1998 4.06 22801.53 6927.12 -1.57 -1.55 -1.54 1.22
1999 4.06 36462.12 7199.60 -1.60 -1.58 -1.57 1.33
2000 4.06 22801.53 10816.80 -1.61 -1.60 -1.59 1.41
2001 4.05 18824.87 9058.45 -1.46 -1.45 -1.44 0.85
2002 4.06 20464.76 6766.12 -1.44 -1.42 -1.41 0.79
2003 4.05 21611.31 5614.19 -1.45 -1.44 -1.42 0.82
2004 4.05 30911.23 5445.26 -1.52 -1.50 -1.49 1.02
2005 4.05 19360.99 4189.79 -1.39 -1.38 -1.36 0.67
2006 4.05 21032.63 7864.87 -1.63 -1.62 -1.60 1.48
2007 4.06 18299.10 5278.55 -1.52 -1.50 -1.49 1.03
2008 4.06 28722.51 6516.37 -1.57 -1.56 -1.54 1.23
2009 4.05 24036.35 5628.83 -1.59 -1.58 -1.56 1.30
2010 4.06 23293.68 8049.43 -1.54 -1.53 -1.52 1.13
2011 4.06 26723.46 11259.91 -1.49 -1.48 -1.47 0.94
2012 4.06 14899.37 7670.79 -1.53 -1.51 -1.50 1.07
2013 4.08 25974.17 5736.94 -1.57 -1.56 -1.54 1.23
2014 4.06 30025.12 8122.67 -1.63 -1.62 -1.61 1.48
2015 4.08 18362.51 9072.14 -1.76 -1.75 -1.73 2.14
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S.1.9 Further results from fitting simulated data

Table S.3 gives the summary statistics for the simulation results shown in Figure 4. The mean and

median estimates of b (that has a true value of -2) for the MLEbin method are all -1.99 or -2.00.

But for the MLEmid method the estimates are less accurate and depend upon the bin width.

We repeat those simulations but with xmin = 16 rather than xmin = 1 to test the sensitivity of

the methods. Figures S.35 and S.36 show the equivalent results to Figures 4 and 5, and Table S.4

gives the summary statistics. The MLEmid method behaves better than it did for xmin = 1, but

not as well as the MLEbin methods that still gives consistently good results.

We also simulate a community with xmin = 1, but with the observed data consisting of all

body masses ≥ c, where c is a cutoff value. In practice, c could be known from the sampling

protocol or assigned a value based on previous experience. Sufficient random body masses were

sampled to obtain a sample size of n = 1,000 for the observed data, and we set c = 16. The

results (Table S.5 and Figures S.37 and S.38) are essentially identical to those for xmin = 16. This

emphasises the scale-free nature of the power-law distribution, whereby the cutoff value does not

affect the estimate of b. Whereas for a scale-dependent distribution, such as the lognormal, the

estimated parameters would depend on the cutoff value.
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Table S.3: Summary statistics for the 10,000 simulations of 1,000 samples from (2), correspond-
ing to the histograms in Figure 4. Each sample is binned using each of four binning types:
‘Linear 1’, ‘Linear 5’ and ‘Linear 10’ for bins of constant bin widths 1, 5, and 10, respectively,
and ‘2k’ for bin widths that double in size. Each binned sample is then fit using the MLEmid and
MLEbin methods, where the MLEmid method uses the midpoint of each bin and the MLEbin
method (shaded rows) more explicitly accounts for the binning in the likelihood function. Statis-
tics relate to the resulting 10,000 estimates of b, with the final column giving the percentage of
simulations for which the estimate is below the true value of b =−2.

Binning type Method 5% quantile Median Mean 95% quantile Percentage
below true

Linear 1 MLEmid -1.98 -1.94 -1.94 -1.89 1
MLEbin -2.05 -1.99 -1.99 -1.94 43

Linear 5 MLEmid -1.63 -1.61 -1.60 -1.57 0
MLEbin -2.06 -1.99 -1.99 -1.94 42

Linear 10 MLEmid -1.43 -1.41 -1.40 -1.35 0
MLEbin -2.06 -1.99 -1.99 -1.93 42

2k MLEmid -1.95 -1.90 -1.90 -1.86 0
MLEbin -2.05 -2.00 -2.00 -1.94 47

Table S.4: As for Table S.3 but with xmin = 16, corresponding to the histograms in Figure S.35.
Binning type Method 5% quantile Median Mean 95% quantile Percentage

below true
Linear 1 MLEmid -2.06 -1.99 -2.00 -1.94 44

MLEbin -2.06 -1.99 -2.00 -1.94 45
Linear 5 MLEmid -2.05 -1.99 -1.99 -1.93 36

MLEbin -2.06 -1.99 -2.00 -1.94 45
Linear 10 MLEmid -2.02 -1.96 -1.96 -1.90 14

MLEbin -2.06 -2.00 -2.00 -1.94 45
2k MLEmid -1.93 -1.87 -1.87 -1.82 0

MLEbin -2.07 -2.00 -2.00 -1.94 51
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Table S.5: As for Table S.3 with xmin = 1, but only sampling data above the cutoff value (i.e.≥c=
16), corresponding to the histograms in Figure S.37. Each simulated data set had a sample size
of 1,000 above the cutoff value. Results are identical to those in Table S.4 except for a few
differences of 0.01 in the statistical values and 1% in the final column.

Binning type Method 5% quantile Median Mean 95% quantile Percentage
below true

Linear 1 MLEmid -2.06 -1.99 -2.00 -1.93 45
MLEbin -2.06 -1.99 -2.00 -1.94 45

Linear 5 MLEmid -2.05 -1.99 -1.99 -1.93 36
MLEbin -2.06 -2.00 -2.00 -1.94 45

Linear 10 MLEmid -2.02 -1.96 -1.96 -1.90 13
MLEbin -2.06 -2.00 -2.00 -1.93 46

2k MLEmid -1.93 -1.87 -1.87 -1.82 0
MLEbin -2.07 -2.00 -2.00 -1.94 51
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Figure S.35: As for Figure 4 but with xmin = 16.
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Figure S.36: As for Figure 5 but with xmin = 16.
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Figure S.37: As for Figure 4 but only observing data above a cutoff of 16. There are only very
minor differences to Figure S.35, as confirmed in Table S.5.
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Figure S.38: As for Figure 5 but only observing data ≥ the cutoff value of 16. There are only
very minor differences to Figure S.36, with five of the observed coverage values changing by 1%.



S.1.10 Further results from changing the minimum cutoff for the IBTS
data

Following Piet and Jennings (2005) and Blanchard et al. (2005) we originally removed all body

masses < 4 g from the IBTS data before analysing the data. Figure 7 for 1999 showed a good

fit of the PLB model to small fish (that contribute most of the counts) but not to larger fish

above ∼100 g. We suggested that such an effect could be a consequence of fishing pressure.

An alternative hypothesis (suggested by a reviewer) is that the small fish are poorly sampled

due to characteristics of the fishing gear, yet still dominate estimation of b because they are so

numerous. Fitting just the larger fish may give a good fit of the PLB distribution that may not

imply an effect on community structure due to fishing. Therefore, here we re-run the analyses

using only fish≥ 100 g. This is much larger than the original 4 g to help reveal any consequences

of the choice of cutoff value.

In Figure S.39 we show the resulting fitted ISD for 1999, only considering fish ≥ 100 g.

Compared to Figure 7 for the full data set: (i) the sample size is reduced from 7,200 to 892,

due to the elimination of the numerous small fish, (ii) the fitted value of b changes from -1.58

to -2.51, (iii) the confidence intervals of b appear larger (due to the smaller sample size), (iv)

the distribution appears to fit fairly well across most of the data, except in roughly the middle

range 400-3,000 g (and a few larger fish). The large change in b emphasises the need to use a

consistent cutoff value between years (else b can change simply due to changing the cutoff value).

So for 1999 it appears that the few large fish are indeed conforming to the PLB distribution.

Figures (and code) for all years are shown as a movie in the sizeSpectra package’s vignette

MEPS IBTS all min 100. The pattern shown in Figure S.39 is not universal – for some years the

fitted curve underestimates the numbers of larger fish (above 2,000 g).

Figure S.40 shows the temporal trend in estimated b, as in Figures 1 and 8 but with the cutoff

of 100 g. Compared to the MLEbins method for the full data (Figure 8), Figure S.40 suggests an

increase in b over time and thus a shallowing of the size spectrum (rather than no change). Also,
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Figure S.39: Individual size distribution and MLEbins fit with 95% confidence intervals for IBTS
data in 1999 considering only body masses > 100 g. Details as in Figure 7.
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Figure S.40: Annual estimates of b for the IBTS data considering only body masses > 100 g.
Details as in Figure 1, with the red lines showing a statistically significant increase in the estimate
of b (the equivalent statistics to the Table S.1 results are: Low= 0.0021, Trend= 0.0115, High=
0.0210, p = 0.02, R2 = 0.18).
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for example, 2001 had the fourth highest estimate of b in Figure 8, but has the lowest estimate

(by some way) in Figure S.40.

The important qualitative differences (no change in b compared to an increase) that occur

when using alternative cutoff values shows the importance of carefully selecting the cutoff value

when using size spectra to understand ecosystems and providing advice to managers. However,

the cutoff value should be chosen based on careful consideration of the size-selectivity charac-

teristics of the fishing gear rather than examination of results, would likely lie somewhere in the

range 4-100 g for these data, and needs to be the same for all years.

S.1.11 Histograms using different binning types

Figures S.41-S.45 show histograms of the same set of 1,000 random numbers sampled from the

PLB distribution (with b = −2, xmin = 1 and xmax = 1,000), plotted using the different binning

types described in the main text. These illustrate the highly skewed nature of the PLB distribution,

and how the first bin can contain most of the counts.
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Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature,

449, 1044–1048.

Edwards, A. M., Freeman, M. P., Breed, G. A., & Jonsen, I. D. (2012). Incorrect likelihood

methods were used to infer scaling laws of marine predator search behaviour. PLoS ONE, 7,

e45174.

64



Linear 1

Values, x

F
re

qu
en

cy

0 100 200 300 400

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure S.41: Histogram of the 1,000 random numbers with bin widths of 1.
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Figure S.42: Histogram of the 1,000 random numbers with bin widths of 5.
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Figure S.43: Histogram of the 1,000 random numbers with bin widths of 10.
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Figure S.44: Histogram of the 1,000 random numbers with bin widths that double in size. Note
that heights of bars represent the counts in each bin, and that because of the non-constant bin
widths the areas are not proportional to the counts – see Figure S.45.
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Figure S.45: Density plot of the 1,000 random numbers with bin widths that double in size,
showing density rather than frequency.
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S.2 Summary of R package sizeSpectra

For full reproducibility, all R code has been functionalised and documented in our new R package

sizeSpectra, which is is freely available at https://github.com/andrew-edwards/sizeSpectra.

This enables reproduction of all our results, tables and figures for the current work plus those in

Edwards et al. (2017).

Version 1.0.0.0 of the package is also archived here in the submitted file sizeSpectra 1.0.0.0.tar.gz,

and can be installed in R by running

install.packages("sizeSpectra 1.0.0.0.tar.gz", repos=NULL)

To get started, see the vignettes at https://github.com/andrew-edwards/sizeSpectra

or directly in R with the commands:

library(sizeSpectra)

browseVignettes("sizeSpectra")

Please post any issues or questions at https://github.com/andrew-edwards/sizeSpectra.

The code will updated if necessary on the GitHub site, so check there for any updates.
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