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Abstract
1.	 Many	indices	have	been	proposed	to	measure	functional	diversity	and	its	four	dis-
tinct	 dimensions:	 functional	 richness,	 evenness,	 divergence	 and	 redundancy.	
Identifying	 indices	 that	 reliably	measure	 the	 functional	 diversity	 dimension(s)	 of	
interest	requires	careful	testing	of	how	each	index	responds	to	species’	traits	and	
abundance	distributions.	In	the	absence	of	a	convenient	simulation	tool,	tests	with	
artificial	data	have	to	date	explored	only	a	limited	number	of	scenarios	or	have	al-
tered	trait	and	abundance	distributions	only	indirectly	based	on	principles	of	evolu-
tion	and	community	assembly.

2.	 We	provide	simul.comms,	an	R	function	that	allows	users	to	test	the	efficacy	of	func-
tional	 diversity	 indices	 by	 easily	 creating	 artificial	 species	 communities	with	 user-
specified	 abundance	 and	 trait	 distributions	 for	 continuous,	 ordinal	 and	 categorical	
traits.	To	illustrate	the	function’s	utility,	we	examine	the	performance	of	R,	a	recently	
published	 abundance-sensitive	 index	 for	 functional	 redundancy.	 We	 use	 two	
	approaches	 to	 designing	 simulation	 tests	 for	 this	 example	 analysis.	 The	 first	 uses	
simul.comms	to	create	six	separate	sets	of	artificial	communities	to	qualitatively	assess	
how	R	responds	to	predictable	changes	in	functional	redundancy.	The	second	uses	
simul.comms	to	independently	alter	seven	community	composition	parameters,	whose	
	influence	on	R	is	then	examined	quantitatively	via	effect	sizes	in	linear	regression.

3.	 Our	analyses	indicate	that	R	broadly	mirrors	expected	changes	in	functional	redun-
dancy	and	predictably	responds	to	changes	in	community	composition	parameters.	
R	appears,	however,	to	primarily	reflect	trait	distributions,	responding	minimally	to	
variance	in	abundance	and	counter-intuitively	to	abundance	range.	Further	refine-
ment	of	tools	to	measure	functional	redundancy	may	therefore	be	desirable.

4.	 The	R	tool	we	provide	should	assist	with	refining	functional	diversity	measures,	a	
critical	step	towards	improving	our	ability	to	understand	and	mitigate	the	impacts	
of	 biodiversity	 loss	 on	 ecosystem	 functioning.	 Because	 simul.comms	 simply	 pro-
duces	two	linked	matrices,	a	species-by-traits	matrix	and	a	site-by-species	abun-
dance	 matrix,	 it	 may	 be	 equally	 valuable	 in	 exploring	 questions	 and	 analytical	
approaches	in	other	areas	of	community	ecology.
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1  | INTRODUCTION

Accurately	quantifying	functional	diversity	–	the	values	and	range	
of	 functionally	 important	 traits	 in	 a	 community	 (Tilman,	 2001)	 –	
is	of	 fundamental	 importance	 for	understanding	how	biodiversity	
loss	 impacts	 ecosystem	 functioning.	 Perhaps	 for	 that	 reason,	 in-
dices	 to	measure	 functional	 diversity	 abound	 (Mouchet,	Villéger,	
Mason,	&	Mouillot,	2010;	Schleuter,	Daufresne,	Massol,	&	Argillier,	
2010;	Weiher,	2010),	with	new	ones	being	added	at	regular	inter-
vals	 (e.g.	Ricotta	et	al.,	2016;	Scheiner,	Kosman,	Presley,	&	Willig,	 
2017).

The	 multitude	 of	 available	 indices	 partly	 reflects	 the	 fact	 that	
functional	 diversity	 comprises	 four	 distinct	 dimensions:	 functional	
richness,	evenness,	divergence	and	redundancy	(Table	1).	Each	dimen-
sion	characterises	a	separate	aspect	of	the	distribution	of	organisms	
in	functional	space,	is	thought	to	interact	with	ecosystem	functioning	
in	distinctive	ways	 (Fonseca	&	Ganade,	2001;	Mason,	Mouillot,	Lee,	
&	Wilson,	 2005),	 likely	 responds	 differently	 to	 environmental	 con-
trols	 and	 disturbances	 (Pakeman	&	 Stockan,	 2014;	Villeger,	Mason,	
&	 Mouillot,	 2008),	 and	 therefore	 is	 pertinent	 to	 different	 research	
	questions	(Tucker	et	al.,	2017;	Table	1).

The	choice	of	index,	hence,	should	first	and	foremost	be	guided	
by	the	functional	diversity	component	of	interest.	But	multiple	indi-
ces	are	available	for	each	component,	and	yet	other,	synthetic	indices	
summarise	functional	diversity	as	a	whole.	Existing	reviews	(Mouchet	
et	al.,	2010;	Schleuter	et	al.,	2010;	Weiher,	2010)	provide	research-
ers	with	some	guidance	as	to	the	advantages	and	disadvantages	of	
individual	metrics,	but	 inevitably	omit	newer	 indices.	Moreover,	no	
review	 to	date	provides	detailed	 information	on	how	sensitive	dif-
ferent	indices	are	to	the	number	of	traits,	the	nature	and	distribution	
of	trait	values,	or	abundance	frequencies.	A	better	understanding	of	
these	 sensitivities	would	 allow	 researchers	 to	 link	diversity	 indices	
back	 to	 the	 underlying	 properties	 of	 ecological	 communities,	 and	
so	 facilitate	 choosing	 the	 index	 best	 suited	 to	 a	 particular	 study’s	
purpose.

Here,	we	 introduce	simul.comms,	a	custom-	written	R	function	 (R	
Core	Team	2017)	 that	 simulates	 artificial	 ecological	 communities	 to	
examine	the	sensitivities	of	functional	diversity	indices.	For	a	regional	
species	pool	of	user-	specified	size,	the	function	creates	a	species-	by-	
traits	matrix	for	which	users	can	specify	the	number	and	type	of	traits	
and	the	density	function	of	the	underlying	trait	values.	The	function	
then	 draws	 a	 user-	specified	 number	 of	 replicate	 communities	 from	
this	regional	pool.	Users	regulate	the	species	richness	of	these	com-
munities,	whether	included	species	should	be	drawn	at	random	or	pre-
dominantly	comprise	taxa	with	either	rare	or	common	traits,	whether	
certain	trait	values	should	be	excluded,	how	many	duplicate	taxa	(spe-
cies	with	 identical	 trait	values)	 should	be	 represented,	what	density	
function	drives	abundance	values	and	whether	abundance	values	are	
assigned	randomly	or	favour	species	with	either	rare	or	common	traits.	
To	 illustrate	the	utility	of	simul.comms,	we	use	 it	 to	examine	the	be-
haviour	of	R,	an	index	of	functional	redundancy	recently	proposed	by	
Ricotta	et	al.	(2016).

2  | R FUNCTION FOR SIMULATING 
ECOLOGICAL COMMUNITIES

The	 function	 simul.comms	 creates	 artificial	 species	 communities,	 al-
lowing	users	to	manipulate	characteristics	of	the	regional	species	pool	
and	individual	communities	via	14	input	arguments	(enclosed	within	
square	brackets	below).	Fully	executable	R	code	and	a	detailed	manual	
are	 provided	 at	 https://github.com/baumlab/sim-ecol-communities	
and	in	Appendix	1.	The	function	would	typically	be	run	multiple	times	
with	 some	arguments	held	 constant	 and	others	 altered	 to	generate	
communities	with	differing	trait	and	abundance	characteristics.

Each	time	the	function	is	run,	it	creates	an	artificial	regional	spe-
cies	 pool	with	 [p]	 species,	 each	 bearing	 [t]	 traits	whose	 values	 are	
drawn	 independently	 according	 to	 the	 sample	 distribution(s)	 speci-
fied	 in	 [tr.method]	 and	 interpreted	 as	 a	 continuous	variable	 or	 oth-
erwise	 converted	 to	ordinal	 or	 categorical	 depending	on	 settings	 in	
[tr.type].	Currently	enabled	trait	sampling	distributions	include	normal	
and	lognormal	with	user-	specified	standard	deviation,	or	uniform	with	
user-	specified	range.	From	the	regional	species	pool	thus	generated,	
the	 function	 draws	 [r]	 replicate	 communities	with	 as	 many	 species	
as	specified	in	[s]	(users	can	specify	multiple	values	for	[s]	in	a	single	
function	 call,	yielding	 [r]	 replicate	 communities	 for	 each	value	of	 [s]	
specified).	Species	 for	each	community	are	drawn	from	the	 regional	
species	pool	either	at	random	or	with	preference	given	to	species	with	
rare	or	common	traits,	depending	on	settings	in	[presence].	Species	are	
assigned	abundance	values	based	on	the	sampling	distribution	speci-
fied	in	[abun.method],	with	sampled	values	assigned	either	randomly	
or	 such	 that	 they	 favour	 either	 species	with	 rare	 or	 common	 traits,	
depending	on	settings	 in	 [abundance].	Currently	enabled	abundance	
sampling	distributions	 include	normal,	 lognormal	and	uniform	 (again	
with	user-	specified	 standard	deviation	or	 range,	 respectively);	 alter-
natively	users	can	set	all	abundances	to	a	fixed	value.	The	degree	to	
which	trait	values	in	the	regional	species	pool	are	represented	within	
individual	communities	can	further	be	manipulated	via	[commin]	and	
[commax],	which	allow	minimum	and	maximum	values	 to	be	set	 for	
each	trait	(e.g.	to	shorten	the	represented	trait	range),	or	[comnot]	and	
[comnot.type],	which	 allow	 individual	 trait	values	or	 a	 range	of	 trait	
values	to	be	excluded	from	representation	(e.g.	to	create	holes	in	the	
represented	trait	range).	Finally,	by	setting	[dups]>0,	users	can	force	
communities	to	include	pairs	of	duplicate	species	that	are	identical	to	
one	another	 in	all	 traits,	mimicking	 the	presence	of	 recently	 split	or	
otherwise	functionally	similar	congenerics.

The	 function	 returns	 three	outputs.	The	 first,	T,	 is	 a	 species-	by-	
traits	matrix	 that	 represents	 the	 regional	 species	pool	 generated	by	
the	function	call.	The	second,	A,	is	a	site-	by-	species	abundance	matrix	
that	details	the	artificial	communities	generated	from	the	regional	spe-
cies	pool.	T	and	A	together	provide	the	input	required	for	computation	
of	most	functional	diversity	indices;	many	recently	developed	indices	
provide	executable	R	code.	The	 third	output,	S,	 returns	 the	settings	
that	determined	the	composition	of	the	artificial	communities	created,	
and	 also	 provides	 summary	 statistics	 about	 the	 resulting	 traits	 and	
abundance	distributions	observed	 in	 each	 community	 that	 can	help	

https://github.com/baumlab/sim-ecol-communities
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F IGURE  1 Simulation	approach	one:	six	separate	simulation	tests	that	qualitatively	examine	how	R	complies	with	predictable	changes	in	
functional	redundancy	(n	=	number	of	unique	scenarios	×	number	of	replicates)

Excepted change in redundancy Parameters manipulated Constant parameters Observed change in R

Test 1: Is R sensi�ve to trait density func�ons & insensi�ve to species richness? (n = 40 × 100)

Redundancy should be largely 
insensi�ve to species richness, 
although slight increases with 
species richness may occur 
because more species mean 
�ghter species packing given a 
limited regional traits pool. At any 
given species richness, redundancy 
should be higher when the trait 
density func�on encourages trait 
overlap.

- Species richness 
(10, 20, 30, …, 90, 100)

- Density func�on of trait values 
in species pool 

(uniform 0 –1, uniform 0 – 5, 
normal with SD = 1, normal 
with SD = 5)

r = 100, p = 1,000, t = 3, 
tr.type = c(“con”, “ord”,“cat”), 
presence=“random”, 
abun.method =  “lnrom:1”, 
abundance = “random”, 
commin = commax = comnot = 
NULL, dups = 0

Test 2: Is R sensi�ve to duplicate species? (n = 55 * 100)

Redundancy at each level of 
species richness should increase 
with the number of duplicates.

- Species richness 
(s = 10, 20, 30, …, 90, 100)

- Number of duplicate species 
(5, 10, 15, …, 45, 50, but only 
up to ½*species richness)

r = 100, p = 1,000, t = 3, 
tr.method = “norm:1”,  
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
abun.method =  “fixed”, 
abundance = “random”, 
commin = commax = comnot = 
NULL

(c) Test 3: Is R sensi�ve to reduc�ons in the represented trait range? (n = 135 × 100)

Redundancy at each level of 
species richness should increase 
with increasing reduc�ons in the 
range of traits represented in the 
community, because a compressed 
trait range implies greater 
similarity among species. Whether
reduc�ons in range affect minima, 
maxima or both should not ma�er.

- Species richness
(30, 70, 100)

- Range of trait values
(reduc�ons of 0.1, 0.2, … 0,5, 
0.6% achieved by 
manipula�ng represented 
trait minima, maxima or both 
for each of 3 traits in turn∗)

r = 100, p = 1,000, t = 3, 
tr.method = “unif:1”,  
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
abun.method =  “lnorm:1”, 
abundance = “random”, 
comnot = NULL, dups = 0

∗ For the categorical trait, we 
varied which levels were excluded

(d) 

(e) 

(f) 

Test 4: Is R insensi�ve to gaps in observed trait values? (n = 108 × 100)

Gaps in con�nuous and ordinal 
traits should not affect redundancy 
because closer similarity among 
species within clusters at either 
end of the gap likely compensates 
for increased between-cluster 
distances. Gaps in categorical traits 
equate to fewer unique trait 
values and thus higher overall 
similarity, so redundancy may 
increase with increasing 
categorical gaps.

- Species richness
(30, 70, 100)

- Gaps within the range of trait 
values

(gaps equa�ng to 0.1, 0.2, 0.3, 
0.4% of trait range in the 
centre, lower or upper half of 
the trait range for each of 3 
traits in turn∗)

r = 100, p = 1,000, t = 3, 
tr.method = “unif:1”,  
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
abun.method =  “lnorm:1”, 
abundance = “random”, 
commin = NULL, commax = NULL, 
dups = 0

∗ For the categorical trait, we 
varied which levels were excluded

Test 5: Is R sensi�ve to how abundances are distributed among traits? (n = 120 × 100)

Under variable abundance, 
redundancy should be highest 
when abundance favours common 
traits, intermediate when 
abundance is assigned at random 
and lowest when abundance 
favours rare traits. This pa�ern
should be strongest where 
abundance density func�ons allow 
for greater variance and range.

- Species richness
(10, 20, 30, …, 90, 100)

- Density func�on for abundance 
values

(uniform, normal, lognormal)
- Assignment of abundance 

values
(random, or favouring rare or 
common traits)

r = 100, p = 1,000, t = 3, 
tr.method = “norm:1”, 
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
commin = commax = comnot = 
NULL, dups = 0

Test 6: Is R sensi�ve to how species presence is distributed among traits? (n = 30 × 100)

Redundancy at each level of 
species richness should be higher 
when selec�on favours common 
rather than random or rare traits, 
because species with common 
traits should be most similar to 
each other.

- Species richness 
(10, 20, 30, …, 90, 100)

- Species selec�on 
(random or favouring
common or rare traits)

r = 100, p = 1,000, t = 3, 
tr.method = “norm:1”, 
tr.type = c(“con”, “ord”, “cat”), 
abun.method = “lnorm:1”, 
abundance = “random”, 
commin = commax = comnot = 
NULL, dups = 0

(a)

(b)
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identify	what	community	composition	parameters	functional	diversity	
indices	are	sensitive	to.

It	is	sometimes	desirable	to	retain	a	specific	regional	species	pool	
but	 impose	different	restrictions	on	how	individual	communities	are	
sampled	from	this	pool.	We	therefore	also	provide	a	second	version	of	
our	function,	simul.comms.2,	which	expects	a	species-	by-	traits	matrix	
produced	by	simul.comms	under	input	[tr.pool]	in	lieu	of	arguments	[p],	
[t],	[tr.method]	and	[tr.type],	but	otherwise	works	identically.

3  | EXAMPLE WORKFLOW

Step	 one	 involves	 selecting	 the	 functional	 diversity	 index	 or	 indices	
whose	behaviour	 is	 to	be	examined	or	 compared.	For	 illustration,	 im-
agine	we	 seek	 to	measure	 functional	 redundancy,	 the	overlap	 in	 spe-
cies’	ecological	traits	(a	proxy	for	the	overlap	in	species’	contributions	to	
ecosystem	functioning).	Greater	overlap	should	improve	the	stability	of	
ecosystem	functioning	because	when	one	species	declines	or	is	lost,	oth-
ers	can	compensate	(Fonseca	&	Ganade,	2001).	One	candidate	for	meas-
uring	 functional	 redundancy	 is	 the	 recently	proposed	 index	R	 (Ricotta	
et	al.,	2016).	R	derives	from	two	well-	supported	measures	of	diversity,	
Simpson’s	index	D	(Simpson,	1949)	and	Rao’s	quadratic	entropy	Q	(Rao,	
1982),	and	computes	redundancy	as	1	−	Q/D	(Ricotta	et	al.,	2016).

Step	 two	 involves	 identifying	 desirable	 characteristics	 that	 the	
index	or	indices	should	have,	given	what	they	intend	to	measure.	Any	
measure	of	redundancy	should	ideally	be	insensitive	to	species	rich-
ness.	It	should	increase	as	the	range	and	variance	of	trait	values	rep-
resented	in	a	community	shrinks	relative	to	trait	values	in	the	species	
pool,	or	greater	local	overlap	emerges	due	to	elevated	kurtosis	in	trait	
values	or	the	selection	of	species	with	identical	or	similar	traits.	While	
most	 functional	 redundancy	 measures	 ignore	 abundance,	 it	 seems	
likely	 that	an	ecosystem	process	performed	by	 three	extremely	 rare	
species	is	more	vulnerable	than	one	executed	by	two	very	abundant	
taxa	 (Mouillot	et	al.,	2013).	 Ideally,	 therefore,	an	 index	of	 functional	
redundancy	 should	 be	 abundance-	sensitive,	 declining	 when	 abun-
dance	 is	 highly	variable	 or	 concentrated	 in	 species	with	 uncommon	
traits.	Equivalent	expectations	for	 responses	of	 indices	of	 functional	
richness,	functional	evenness	and	functional	divergence	are	outlined	
in	Table	S1	(Appendix	2).

Step	 three	 involves	 translating	 these	 expectations	 into	 specific	
tests	with	 the	 help	 of	 simul.comms	 by	 creating	 a	variety	 of	 artificial	
communities	that	differ	in	those	community	composition	parameters	

that	should	or	should	not	affect	the	index	or	indices	of	interest.	For	our	
example,	we	illustrate	two	different	designs	of	simulation	test.

The	 first	 design	 focuses	 on	 two	 or	 three	 community	 composi-
tion	parameters	at	a	time	to	test	for	six	desirable	 (in)sensitivities,	as	
detailed	 in	Figure	1.	Each	community	was	sampled	 from	an	artificial	
regional	 species	 pool	 of	 1,000	 taxa	with	 one	 continuous,	 one	 ordi-
nal	 and	 one	 categorical	 trait	 each,	 and	 replicated	 100	 times.	R	was	
then	calculated	based	on	Gower	distances	(Podani	&	Schmera,	2006)	
among	species,	and	 its	response	to	changes	 in	community	composi-
tion	checked	visually	using	the	plots	in	Figure	1	to	qualitatively	assess	
its	compliance	with	expectations	(also	detailed	in	Figure	1).

While	 such	 specific	 tests	 can	 be	 useful	 in	 verifying	 desirable	
properties,	 it	 is	 important	 to	 recognise	 that	 default	 settings	 for	 un-
manipulated	 parameters	 may	 affect	 simulation	 outcomes	 and	 their	
interpretation.	Our	 second	simulation	design	 therefore	varied	 seven	
community	composition	parameters	independently,	yielding	104,676	
unique	 communities.	 The	 regional	 species	 pool	 stayed	 constant	 at	
1,000	species	with	one	continuous,	ordinal	and	categorical	trait	each.	
Trait	density	distributions,	however,	varied	([tr.method]	set	to	standard	
normal,	lognomal	or	uniform).	The	species	richness	of	individual	com-
munities	 ([s])	varied	 from	10	 to	100	 species	 (in	 steps	of	10),	picked	
either	randomly	or	favouring	rare	or	common	traits	([presence]),	with	
up	 to	 50	 duplicate	 species	 ([dups]).	 Abundance	 distributions	 varied	
([abun.method]	 set	 to	 standard	normal,	 lognormal,	uniform	or	 fixed)	
and	were	 also	 assigned	 either	 randomly	 or	 based	 on	 traits	 ([abun-
dance]).	Trait	values	 represented	 in	communities	 for	any	one	trait	 in	
turn	either	included	the	full	range	of	values	in	the	species	pool	or	had	
restricting	minima	 ([commin]),	maxima	 ([commax]),	 or	 both,	 or	value	
gaps	in	the	lower,	central	or	upper	range	([comnot]).	Each	combination	
of	parameters	was	replicated	across	100	communities.

The	corresponding	values	of	R	then	served	as	the	response	variable	
in	linear	regression	models	designed	to	determine	which	of	the	follow-
ing	predictors	(all	available	in	simul.comms’	output)	most	influenced	the	
index,	with	expected	positive	(+),	negative	(−),	or	weak	(o)	effects:	the	
range	(−),	variance	(−)	and	kurtosis	(+)	of	the	continuous	trait,	range	(−),	
variance	(−)	and	kurtosis	(+)	of	the	ordinal	trait,	number	of	unique	val-
ues	in	the	categorical	trait	(−),	whether	abundance	favoured	common	
(+)	or	rare	(−)	as	opposed	to	random	trait	values,	and	the	range	(−),	vari-
ance	(−),	and	kurtosis	(o)	of	abundance	values.	We	used	linear	regres-
sions	because	our	predictions	regarding	the	expected	responses	were	
purely	 directional.	We	 built	models	with	 all	 possible	 subsets	 of	 the	
predictors	using	function	dredge	in	R	package	MuMIn	(Barton,	2013),	

F IGURE  2 Simulation	approach	two:	
linear	regression	results	summarising	the	
expected	(y-	axis	labels)	and	observed	
(plotted	symbols)	direction	and	relative	
strength	(standardised	parameter	
estimate)	of	influence	that	characteristics	
of	community	composition	exert	on	
redundancy index R.	Parameter	estimates	
<0.05	(left	of	broken	line)	counted	as	weak	
effects

Positive
Negative
Weak
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but	the	full	model	emerged	clearly	as	the	top	model	(ΔAICc	>	1,000).	
We	therefore	used	the	full	model’s	coefficient	of	determination	(R2)	to	
quantify	how	predictably	R	varied	with	community	composition,	and	
its	standardised	parameter	estimates	as	a	measure	of	each	predictor’s	
effect	size.	Parameter	estimates	were	standardised	using	predictors’	
partial	 standard	deviations	 (Barton,	2013).	Parameter	estimates	 less	
than	0.05	counted	as	weak	effects.

4  | RESULTS

R	mostly	 complied	with	 the	 expected	 direction	 of	 change	 in	 the	 six	
qualitative	tests	 (Figure	1),	although	 it	 responded	only	weakly	to	the	
presence	of	duplicate	species	in	test	2	(Figure	1b),	and	for	the	ordinal	
trait	proved	unexpectedly	sensitive	to	the	position	of	range	reductions	
(test	3,	Figure	1c)	and	representation	gaps	(test	4,	Figure	1d).	In	the	lin-
ear	regression	model,	R	behaved	quite	predictably	(R2	=	.84),	changing	
in	accordance	with	expectations	for	9	of	12	predictors	(Figure	2).	It	was	
most	influenced	by	the	number	of	unique	categorical	trait	values	and	
the	range	(and	kurtosis)	of	the	continuous	and	ordinal	traits.	Only	its	
lacking	response	to	variance	in	the	continuous	trait	and	in	abundance,	
and	 (mild)	 positive	 response	 to	 range	 in	 abundance	were	 counterin-
tuitive.	We	conclude	that	R	provides	a	decent	measure	of	functional	
redundancy,	but	further	refinement	may	be	warranted	given	the	desir-
able	characteristics	for	redundancy	measures	we	outline	above.

5  | DISCUSSION

Identifying	 reliable	 measures	 of	 functional	 diversity	 constitutes	 a	
critical	 step	 in	 improving	our	ability	 to	understand	and	mitigate	 the	
impacts	 of	 biodiversity	 loss	 on	 ecosystem	 functioning.	 Given	 the	
multitude	of	indices	available,	careful	scrutiny	is	important	and	is	best	
accomplished	via	simulations.	Beyond	representing	an	accessible	way	
to	test	and	illustrate	known	mathematical	properties,	simulations	may	
reveal	previously	unrecognised	sensitivities.

Naturally,	 simulations	 to	 assess	 the	 behaviour	 of	 functional	 di-
versity	 indices	 are	not	new.	To	date,	 however,	 such	 simulations	have	
generally	examined	a	 limited	number	of	 scenarios	without	 replication	
(Chiu	&	Chao,	2014;	Ricotta	et	al.,	2016;	Scheiner	et	al.,	2017;	Schleuter	
et	al.,	2010),	have	considered	traits	with	only	a	single	density	function	
(Laliberté	&	Legendre,	2010;	Lefcheck,	Bastazini,	&	Griffin,	2015;	Villeger	
et	al.,	2008),	or	have	manipulated	trait	and	abundance	distributions	only	
indirectly	 by	 either	modifying	 real	 ecological	 data	 through	 sequential	
removal	of	 information	for	 individual	species	or	sites	 (Májeková	et	al.,	
2016;	Pakeman,	2014),	or	by	basing	community	composition	on	evo-
lutionary	principles	and	community	assembly	rules	(Maire,	Grenouillet,	
Brosse,	&	Villéger,	2015;	Mason,	de	Bello,	Mouillot,	Pavoine,	&	Dray,	
2013;	Mouchet	 et	al.,	 2010).	The	 latter	model-	based	 simulations	 are	
attractive	 for	 their	 grounding	 in	 ecological	 theory,	 but	 limit	 explora-
tion	 of	 sensitivities	 not	 directly	 related	 to	 processes	 captured	 in	 the	
underlying	model.	The	purely	statistically	driven	simulations	facilitated	
by simul.comms	risk	creation	of	ecologically	implausible	scenarios;	judi-
cious	use,	however,	can	elucidate	the	impact	of	both	realistic	ecological	

phenomena	(e.g.	varying	dominance	patterns)	and	methodological	con-
straints	(e.g.	inability	to	measure	traits	on	a	continuous	scale).

Further	 refinements	 to	 simul.comms	 are	 no	 doubt	 possible.	 It	
may	 be	 desirable,	 for	 example,	 to	 implement	 correlation	 among	
two	 or	 more	 simulated	 traits,	 specify	 the	 presence	 of	 multiple	
(rather	 than	 just	 two)	 species	with	 identical	 traits,	 force	 duplicate	
species	 to	 split	 a	 single	 abundance	 value,	 or	 set	 a	 community’s	
total	 abundance.	We	welcome	 further	 suggestions	 and	 encourage	
programming-	savvy	users	to	implement	additional	functionality	via	
Github	(https://github.com/baumlab/sim-ecol-communities).	As	use	
of	simul.comms	grows,	we	hope	that	it	will	help	refine	the	quality	of	
analyses	and	insights	in	functional	diversity	research.	Beyond	that,	
simul.comms	may	prove	useful	in	other	areas	of	community	ecology,	
where	carefully	customised	artificial	data	on	species	traits	and	com-
munity	 composition	 may	 help	 to	 scrutinise	 observed	 patterns	 or	
methodological	approaches.
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