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Abstract
1.	 Many indices have been proposed to measure functional diversity and its four dis-
tinct dimensions: functional richness, evenness, divergence and redundancy. 
Identifying indices that reliably measure the functional diversity dimension(s) of 
interest requires careful testing of how each index responds to species’ traits and 
abundance distributions. In the absence of a convenient simulation tool, tests with 
artificial data have to date explored only a limited number of scenarios or have al-
tered trait and abundance distributions only indirectly based on principles of evolu-
tion and community assembly.

2.	 We provide simul.comms, an R function that allows users to test the efficacy of func-
tional diversity indices by easily creating artificial species communities with user-
specified abundance and trait distributions for continuous, ordinal and categorical 
traits. To illustrate the function’s utility, we examine the performance of R, a recently 
published abundance-sensitive index for functional redundancy. We use two 
approaches to designing simulation tests for this example analysis. The first uses 
simul.comms to create six separate sets of artificial communities to qualitatively assess 
how R responds to predictable changes in functional redundancy. The second uses 
simul.comms to independently alter seven community composition parameters, whose 
influence on R is then examined quantitatively via effect sizes in linear regression.

3.	 Our analyses indicate that R broadly mirrors expected changes in functional redun-
dancy and predictably responds to changes in community composition parameters. 
R appears, however, to primarily reflect trait distributions, responding minimally to 
variance in abundance and counter-intuitively to abundance range. Further refine-
ment of tools to measure functional redundancy may therefore be desirable.

4.	 The R tool we provide should assist with refining functional diversity measures, a 
critical step towards improving our ability to understand and mitigate the impacts 
of biodiversity loss on ecosystem functioning. Because simul.comms simply pro-
duces two linked matrices, a species-by-traits matrix and a site-by-species abun-
dance matrix, it may be equally valuable in exploring questions and analytical 
approaches in other areas of community ecology.
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1  | INTRODUCTION

Accurately quantifying functional diversity – the values and range 
of functionally important traits in a community (Tilman, 2001) – 
is of fundamental importance for understanding how biodiversity 
loss impacts ecosystem functioning. Perhaps for that reason, in-
dices to measure functional diversity abound (Mouchet, Villéger, 
Mason, & Mouillot, 2010; Schleuter, Daufresne, Massol, & Argillier, 
2010; Weiher, 2010), with new ones being added at regular inter-
vals (e.g. Ricotta et al., 2016; Scheiner, Kosman, Presley, & Willig,  
2017).

The multitude of available indices partly reflects the fact that 
functional diversity comprises four distinct dimensions: functional 
richness, evenness, divergence and redundancy (Table 1). Each dimen-
sion characterises a separate aspect of the distribution of organisms 
in functional space, is thought to interact with ecosystem functioning 
in distinctive ways (Fonseca & Ganade, 2001; Mason, Mouillot, Lee, 
& Wilson, 2005), likely responds differently to environmental con-
trols and disturbances (Pakeman & Stockan, 2014; Villeger, Mason, 
& Mouillot, 2008), and therefore is pertinent to different research 
questions (Tucker et al., 2017; Table 1).

The choice of index, hence, should first and foremost be guided 
by the functional diversity component of interest. But multiple indi-
ces are available for each component, and yet other, synthetic indices 
summarise functional diversity as a whole. Existing reviews (Mouchet 
et al., 2010; Schleuter et al., 2010; Weiher, 2010) provide research-
ers with some guidance as to the advantages and disadvantages of 
individual metrics, but inevitably omit newer indices. Moreover, no 
review to date provides detailed information on how sensitive dif-
ferent indices are to the number of traits, the nature and distribution 
of trait values, or abundance frequencies. A better understanding of 
these sensitivities would allow researchers to link diversity indices 
back to the underlying properties of ecological communities, and 
so facilitate choosing the index best suited to a particular study’s 
purpose.

Here, we introduce simul.comms, a custom-written R function (R 
Core Team 2017) that simulates artificial ecological communities to 
examine the sensitivities of functional diversity indices. For a regional 
species pool of user-specified size, the function creates a species-by-
traits matrix for which users can specify the number and type of traits 
and the density function of the underlying trait values. The function 
then draws a user-specified number of replicate communities from 
this regional pool. Users regulate the species richness of these com-
munities, whether included species should be drawn at random or pre-
dominantly comprise taxa with either rare or common traits, whether 
certain trait values should be excluded, how many duplicate taxa (spe-
cies with identical trait values) should be represented, what density 
function drives abundance values and whether abundance values are 
assigned randomly or favour species with either rare or common traits. 
To illustrate the utility of simul.comms, we use it to examine the be-
haviour of R, an index of functional redundancy recently proposed by 
Ricotta et al. (2016).

2  | R FUNCTION FOR SIMULATING 
ECOLOGICAL COMMUNITIES

The function simul.comms creates artificial species communities, al-
lowing users to manipulate characteristics of the regional species pool 
and individual communities via 14 input arguments (enclosed within 
square brackets below). Fully executable R code and a detailed manual 
are provided at https://github.com/baumlab/sim-ecol-communities 
and in Appendix 1. The function would typically be run multiple times 
with some arguments held constant and others altered to generate 
communities with differing trait and abundance characteristics.

Each time the function is run, it creates an artificial regional spe-
cies pool with [p] species, each bearing [t] traits whose values are 
drawn independently according to the sample distribution(s) speci-
fied in [tr.method] and interpreted as a continuous variable or oth-
erwise converted to ordinal or categorical depending on settings in 
[tr.type]. Currently enabled trait sampling distributions include normal 
and lognormal with user-specified standard deviation, or uniform with 
user-specified range. From the regional species pool thus generated, 
the function draws [r] replicate communities with as many species 
as specified in [s] (users can specify multiple values for [s] in a single 
function call, yielding [r] replicate communities for each value of [s] 
specified). Species for each community are drawn from the regional 
species pool either at random or with preference given to species with 
rare or common traits, depending on settings in [presence]. Species are 
assigned abundance values based on the sampling distribution speci-
fied in [abun.method], with sampled values assigned either randomly 
or such that they favour either species with rare or common traits, 
depending on settings in [abundance]. Currently enabled abundance 
sampling distributions include normal, lognormal and uniform (again 
with user-specified standard deviation or range, respectively); alter-
natively users can set all abundances to a fixed value. The degree to 
which trait values in the regional species pool are represented within 
individual communities can further be manipulated via [commin] and 
[commax], which allow minimum and maximum values to be set for 
each trait (e.g. to shorten the represented trait range), or [comnot] and 
[comnot.type], which allow individual trait values or a range of trait 
values to be excluded from representation (e.g. to create holes in the 
represented trait range). Finally, by setting [dups]>0, users can force 
communities to include pairs of duplicate species that are identical to 
one another in all traits, mimicking the presence of recently split or 
otherwise functionally similar congenerics.

The function returns three outputs. The first, T, is a species-by-
traits matrix that represents the regional species pool generated by 
the function call. The second, A, is a site-by-species abundance matrix 
that details the artificial communities generated from the regional spe-
cies pool. T and A together provide the input required for computation 
of most functional diversity indices; many recently developed indices 
provide executable R code. The third output, S, returns the settings 
that determined the composition of the artificial communities created, 
and also provides summary statistics about the resulting traits and 
abundance distributions observed in each community that can help 
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F IGURE  1 Simulation approach one: six separate simulation tests that qualitatively examine how R complies with predictable changes in 
functional redundancy (n = number of unique scenarios × number of replicates)

Excepted change in redundancy Parameters manipulated Constant parameters Observed change in R

Test 1: Is R sensi�ve to trait density func�ons & insensi�ve to species richness? (n = 40 × 100)

Redundancy should be largely 
insensi�ve to species richness, 
although slight increases with 
species richness may occur 
because more species mean 
�ghter species packing given a 
limited regional traits pool. At any 
given species richness, redundancy 
should be higher when the trait 
density func�on encourages trait 
overlap.

- Species richness 
(10, 20, 30, …, 90, 100)

- Density func�on of trait values 
in species pool 

(uniform 0 –1, uniform 0 – 5, 
normal with SD = 1, normal 
with SD = 5)

r = 100, p = 1,000, t = 3, 
tr.type = c(“con”, “ord”,“cat”), 
presence=“random”, 
abun.method =  “lnrom:1”, 
abundance = “random”, 
commin = commax = comnot = 
NULL, dups = 0

Test 2: Is R sensi�ve to duplicate species? (n = 55 * 100)

Redundancy at each level of 
species richness should increase 
with the number of duplicates.

- Species richness 
(s = 10, 20, 30, …, 90, 100)

- Number of duplicate species 
(5, 10, 15, …, 45, 50, but only 
up to ½*species richness)

r = 100, p = 1,000, t = 3, 
tr.method = “norm:1”,  
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
abun.method =  “fixed”, 
abundance = “random”, 
commin = commax = comnot = 
NULL

(c) Test 3: Is R sensi�ve to reduc�ons in the represented trait range? (n = 135 × 100)

Redundancy at each level of 
species richness should increase 
with increasing reduc�ons in the 
range of traits represented in the 
community, because a compressed 
trait range implies greater 
similarity among species. Whether
reduc�ons in range affect minima, 
maxima or both should not ma�er.

- Species richness
(30, 70, 100)

- Range of trait values
(reduc�ons of 0.1, 0.2, … 0,5, 
0.6% achieved by 
manipula�ng represented 
trait minima, maxima or both 
for each of 3 traits in turn∗)

r = 100, p = 1,000, t = 3, 
tr.method = “unif:1”,  
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
abun.method =  “lnorm:1”, 
abundance = “random”, 
comnot = NULL, dups = 0

∗ For the categorical trait, we 
varied which levels were excluded

(d) 

(e) 

(f) 

Test 4: Is R insensi�ve to gaps in observed trait values? (n = 108 × 100)

Gaps in con�nuous and ordinal 
traits should not affect redundancy 
because closer similarity among 
species within clusters at either 
end of the gap likely compensates 
for increased between-cluster 
distances. Gaps in categorical traits 
equate to fewer unique trait 
values and thus higher overall 
similarity, so redundancy may 
increase with increasing 
categorical gaps.

- Species richness
(30, 70, 100)

- Gaps within the range of trait 
values

(gaps equa�ng to 0.1, 0.2, 0.3, 
0.4% of trait range in the 
centre, lower or upper half of 
the trait range for each of 3 
traits in turn∗)

r = 100, p = 1,000, t = 3, 
tr.method = “unif:1”,  
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
abun.method =  “lnorm:1”, 
abundance = “random”, 
commin = NULL, commax = NULL, 
dups = 0

∗ For the categorical trait, we 
varied which levels were excluded

Test 5: Is R sensi�ve to how abundances are distributed among traits? (n = 120 × 100)

Under variable abundance, 
redundancy should be highest 
when abundance favours common 
traits, intermediate when 
abundance is assigned at random 
and lowest when abundance 
favours rare traits. This pa�ern
should be strongest where 
abundance density func�ons allow 
for greater variance and range.

- Species richness
(10, 20, 30, …, 90, 100)

- Density func�on for abundance 
values

(uniform, normal, lognormal)
- Assignment of abundance 

values
(random, or favouring rare or 
common traits)

r = 100, p = 1,000, t = 3, 
tr.method = “norm:1”, 
tr.type = c(“con”, “ord”, “cat”), 
presence=“random”, 
commin = commax = comnot = 
NULL, dups = 0

Test 6: Is R sensi�ve to how species presence is distributed among traits? (n = 30 × 100)

Redundancy at each level of 
species richness should be higher 
when selec�on favours common 
rather than random or rare traits, 
because species with common 
traits should be most similar to 
each other.

- Species richness 
(10, 20, 30, …, 90, 100)

- Species selec�on 
(random or favouring
common or rare traits)

r = 100, p = 1,000, t = 3, 
tr.method = “norm:1”, 
tr.type = c(“con”, “ord”, “cat”), 
abun.method = “lnorm:1”, 
abundance = “random”, 
commin = commax = comnot = 
NULL, dups = 0

(a)

(b)
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identify what community composition parameters functional diversity 
indices are sensitive to.

It is sometimes desirable to retain a specific regional species pool 
but impose different restrictions on how individual communities are 
sampled from this pool. We therefore also provide a second version of 
our function, simul.comms.2, which expects a species-by-traits matrix 
produced by simul.comms under input [tr.pool] in lieu of arguments [p], 
[t], [tr.method] and [tr.type], but otherwise works identically.

3  | EXAMPLE WORKFLOW

Step one involves selecting the functional diversity index or indices 
whose behaviour is to be examined or compared. For illustration, im-
agine we seek to measure functional redundancy, the overlap in spe-
cies’ ecological traits (a proxy for the overlap in species’ contributions to 
ecosystem functioning). Greater overlap should improve the stability of 
ecosystem functioning because when one species declines or is lost, oth-
ers can compensate (Fonseca & Ganade, 2001). One candidate for meas-
uring functional redundancy is the recently proposed index R (Ricotta 
et al., 2016). R derives from two well-supported measures of diversity, 
Simpson’s index D (Simpson, 1949) and Rao’s quadratic entropy Q (Rao, 
1982), and computes redundancy as 1 − Q/D (Ricotta et al., 2016).

Step two involves identifying desirable characteristics that the 
index or indices should have, given what they intend to measure. Any 
measure of redundancy should ideally be insensitive to species rich-
ness. It should increase as the range and variance of trait values rep-
resented in a community shrinks relative to trait values in the species 
pool, or greater local overlap emerges due to elevated kurtosis in trait 
values or the selection of species with identical or similar traits. While 
most functional redundancy measures ignore abundance, it seems 
likely that an ecosystem process performed by three extremely rare 
species is more vulnerable than one executed by two very abundant 
taxa (Mouillot et al., 2013). Ideally, therefore, an index of functional 
redundancy should be abundance-sensitive, declining when abun-
dance is highly variable or concentrated in species with uncommon 
traits. Equivalent expectations for responses of indices of functional 
richness, functional evenness and functional divergence are outlined 
in Table S1 (Appendix 2).

Step three involves translating these expectations into specific 
tests with the help of simul.comms by creating a variety of artificial 
communities that differ in those community composition parameters 

that should or should not affect the index or indices of interest. For our 
example, we illustrate two different designs of simulation test.

The first design focuses on two or three community composi-
tion parameters at a time to test for six desirable (in)sensitivities, as 
detailed in Figure 1. Each community was sampled from an artificial 
regional species pool of 1,000 taxa with one continuous, one ordi-
nal and one categorical trait each, and replicated 100 times. R was 
then calculated based on Gower distances (Podani & Schmera, 2006) 
among species, and its response to changes in community composi-
tion checked visually using the plots in Figure 1 to qualitatively assess 
its compliance with expectations (also detailed in Figure 1).

While such specific tests can be useful in verifying desirable 
properties, it is important to recognise that default settings for un-
manipulated parameters may affect simulation outcomes and their 
interpretation. Our second simulation design therefore varied seven 
community composition parameters independently, yielding 104,676 
unique communities. The regional species pool stayed constant at 
1,000 species with one continuous, ordinal and categorical trait each. 
Trait density distributions, however, varied ([tr.method] set to standard 
normal, lognomal or uniform). The species richness of individual com-
munities ([s]) varied from 10 to 100 species (in steps of 10), picked 
either randomly or favouring rare or common traits ([presence]), with 
up to 50 duplicate species ([dups]). Abundance distributions varied 
([abun.method] set to standard normal, lognormal, uniform or fixed) 
and were also assigned either randomly or based on traits ([abun-
dance]). Trait values represented in communities for any one trait in 
turn either included the full range of values in the species pool or had 
restricting minima ([commin]), maxima ([commax]), or both, or value 
gaps in the lower, central or upper range ([comnot]). Each combination 
of parameters was replicated across 100 communities.

The corresponding values of R then served as the response variable 
in linear regression models designed to determine which of the follow-
ing predictors (all available in simul.comms’ output) most influenced the 
index, with expected positive (+), negative (−), or weak (o) effects: the 
range (−), variance (−) and kurtosis (+) of the continuous trait, range (−), 
variance (−) and kurtosis (+) of the ordinal trait, number of unique val-
ues in the categorical trait (−), whether abundance favoured common 
(+) or rare (−) as opposed to random trait values, and the range (−), vari-
ance (−), and kurtosis (o) of abundance values. We used linear regres-
sions because our predictions regarding the expected responses were 
purely directional. We built models with all possible subsets of the 
predictors using function dredge in R package MuMIn (Barton, 2013), 

F IGURE  2 Simulation approach two: 
linear regression results summarising the 
expected (y-axis labels) and observed 
(plotted symbols) direction and relative 
strength (standardised parameter 
estimate) of influence that characteristics 
of community composition exert on 
redundancy index R. Parameter estimates 
<0.05 (left of broken line) counted as weak 
effects

Positive
Negative
Weak
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but the full model emerged clearly as the top model (ΔAICc > 1,000). 
We therefore used the full model’s coefficient of determination (R2) to 
quantify how predictably R varied with community composition, and 
its standardised parameter estimates as a measure of each predictor’s 
effect size. Parameter estimates were standardised using predictors’ 
partial standard deviations (Barton, 2013). Parameter estimates less 
than 0.05 counted as weak effects.

4  | RESULTS

R mostly complied with the expected direction of change in the six 
qualitative tests (Figure 1), although it responded only weakly to the 
presence of duplicate species in test 2 (Figure 1b), and for the ordinal 
trait proved unexpectedly sensitive to the position of range reductions 
(test 3, Figure 1c) and representation gaps (test 4, Figure 1d). In the lin-
ear regression model, R behaved quite predictably (R2 = .84), changing 
in accordance with expectations for 9 of 12 predictors (Figure 2). It was 
most influenced by the number of unique categorical trait values and 
the range (and kurtosis) of the continuous and ordinal traits. Only its 
lacking response to variance in the continuous trait and in abundance, 
and (mild) positive response to range in abundance were counterin-
tuitive. We conclude that R provides a decent measure of functional 
redundancy, but further refinement may be warranted given the desir-
able characteristics for redundancy measures we outline above.

5  | DISCUSSION

Identifying reliable measures of functional diversity constitutes a 
critical step in improving our ability to understand and mitigate the 
impacts of biodiversity loss on ecosystem functioning. Given the 
multitude of indices available, careful scrutiny is important and is best 
accomplished via simulations. Beyond representing an accessible way 
to test and illustrate known mathematical properties, simulations may 
reveal previously unrecognised sensitivities.

Naturally, simulations to assess the behaviour of functional di-
versity indices are not new. To date, however, such simulations have 
generally examined a limited number of scenarios without replication 
(Chiu & Chao, 2014; Ricotta et al., 2016; Scheiner et al., 2017; Schleuter 
et al., 2010), have considered traits with only a single density function 
(Laliberté & Legendre, 2010; Lefcheck, Bastazini, & Griffin, 2015; Villeger 
et al., 2008), or have manipulated trait and abundance distributions only 
indirectly by either modifying real ecological data through sequential 
removal of information for individual species or sites (Májeková et al., 
2016; Pakeman, 2014), or by basing community composition on evo-
lutionary principles and community assembly rules (Maire, Grenouillet, 
Brosse, & Villéger, 2015; Mason, de Bello, Mouillot, Pavoine, & Dray, 
2013; Mouchet et al., 2010). The latter model-based simulations are 
attractive for their grounding in ecological theory, but limit explora-
tion of sensitivities not directly related to processes captured in the 
underlying model. The purely statistically driven simulations facilitated 
by simul.comms risk creation of ecologically implausible scenarios; judi-
cious use, however, can elucidate the impact of both realistic ecological 

phenomena (e.g. varying dominance patterns) and methodological con-
straints (e.g. inability to measure traits on a continuous scale).

Further refinements to simul.comms are no doubt possible. It 
may be desirable, for example, to implement correlation among 
two or more simulated traits, specify the presence of multiple 
(rather than just two) species with identical traits, force duplicate 
species to split a single abundance value, or set a community’s 
total abundance. We welcome further suggestions and encourage 
programming-savvy users to implement additional functionality via 
Github (https://github.com/baumlab/sim-ecol-communities). As use 
of simul.comms grows, we hope that it will help refine the quality of 
analyses and insights in functional diversity research. Beyond that, 
simul.comms may prove useful in other areas of community ecology, 
where carefully customised artificial data on species traits and com-
munity composition may help to scrutinise observed patterns or 
methodological approaches.
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