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This Appendix gives further mathematical derivations and explanations (Section A.1),

and extra numerical results including sensitivity analyses (Section A.2).

In Section A.1 we first give analytical results that can be derived from the individual

size distribution (1), including the biomass distribution function, the log-likelihood func-

tion, the probability distribution function and the random number generator. We explain

the plotting of the abundance size spectrum, including showing Figure 2(h) with a non-

logarithmic y-axis, and derive the bin definitions for a given data set as for the mizer

package. We then demonstrate that the base of the logarithm of the axes does not affect

the slope in regression-based binning methods, and explain a further drawback of binning.

Finally we derive the likelihood function for data that are only available in binned form

(the MLEbin method).

In Section A.2 we provide further numerical results, starting with investigating the

estimation of xmax separately for each simulated data set or using one global value across

all data sets. We then show the main sensitivity analyses, conducted using xmax = 10, 000,

b = −2.5, b = −1.5, b = −0.5 and n = 10, 000; for each analysis we show the equivalent

results of Figures 2, 3, 4 and Table 2. We explain how the seed for the random number

generator can potentially influence results, although we find in practice that this does not

happen. Finally, we explain the subsampling of confidence intervals used for Figure 4 and

related figures.
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A.1 Further analytical results

A.1.1 Derivation of biomass distribution function

The total biomass of all individuals ≤ x is, from (1), (3) and (4),

∫ x

xmin

B(x)dx =

∫ x

xmin

nxf(x)dx (A.1)

=

∫ x

xmin

nCxb+1dx (A.2)

= nC

[

xb+2

b+ 2

]x

xmin

, b 6= −2 (A.3)

= nC
xb+2 − x b+2

min

b+ 2
, b 6= −2. (A.4)

For b = −2 we have

∫ x

xmin

B(x)dx =

∫ x

xmin

nCxb+1dx (A.5)

=

∫ x

xmin

nCx−1dx (A.6)

= nC [log x]xxmin
(A.7)

= nC(log x− log xmin). (A.8)

A.1.2 Log-likelihood function for bounded power-law

distribution

For the PLB distribution, the log-likelihood function for b 6= −1 is

log[L(b|data x)] =

n
∑

i=1

log f(xi) (A.9)

= n log

(

b+ 1

x b+1
max − x b+1

min

)

+ b

n
∑

i=1

log xi, (A.10)

where L(b|data x) is the likelihood of a particular value of the unknown parameter b given

the known data x = {x1, x2, x3, ..., xn} = {xi}
n
i=1, and f(·) is the probability density
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function (1); see Appendix A of Edwards (2011) for the derivation, and also Page (1968)

and White et al. (2008). The maximum likelihood estimate for xmax is the maximum value

of the data. This is shown mathematically by Edwards et al. (2012), and basically occurs

because there is no evidence that xmax should be greater than the maximum value of the

data – the most likely value of xmax is therefore the largest observed value. It cannot be

smaller, since this would violate the definition of xmax [see equation (1)]. Similarly, the

maximum likelihood estimate for xmin is the minimum value of the data. For b = −1 the

log-likelihood function is

log[L(b = −1|data x)] = −n log (log xmax − log xmin)−
n
∑

i=1

log xi. (A.11)

A.1.3 Probability distribution function and random number

generation

For the bounded power-law distribution (PLB) random numbers are generated using the

inverse method. This involves first drawing a random number u from the uniform dis-

tribution over the range [0, 1]. Then x = F−1(u) is a random number from the PLB

distribution, where F (x) is the probability distribution function (Grimmett and Stirzaker,

1990), or cumulative distribution function (Bolker, 2008), corresponding to the probability

density function (1). By definition, F (x) = P (X ≤ x), i.e. the probability that a randomly

selected individual has body size ≤ x.
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The calculation of F (x) using f(x) from (1) is, for b 6= −1:

F (x) = P(X ≤ x) (A.12)

=

∫ x

xmin

f(x)dx (A.13)

=

∫ x

xmin

b+ 1

x b+1
max − x b+1

min

xbdx (A.14)

=
���b+ 1

x b+1
max − x b+1

min

[

xb+1

���b+ 1

]x

xmin

(A.15)

=
xb+1 − x b+1

min

x b+1
max − x b+1

min

. (A.16)

Then setting u = F (x) and rearranging for x gives

u =
xb+1 − x b+1

min

x b+1
max − x b+1

min

(A.17)

(

x b+1
max − x b+1

min

)

u = xb+1 − x b+1
min (A.18)

ux b+1
max + (1− u)x b+1

min = xb+1 (A.19)

x =
[

ux b+1
max + (1− u)x b+1

min

]1/(b+1)

. (A.20)

For b = −1:

F (x) =

∫ x

xmin

1

log xmax − log xmin
x−1dx (A.21)

=
1

log xmax − log xmin

[

log x
]x

xmin

(A.22)

=
log x− log xmin

log xmax − log xmin
(A.23)

=
log(x/xmin)

log(xmax/xmin)
. (A.24)
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Then setting u = F (x) and rearranging for x gives

u =
log(x/xmin)

log(xmax/xmin)
(A.25)

u log

(

xmax

xmin

)

= log

(

x

xmin

)

(A.26)

log

(

xmax

xmin

)u

= log
x

xmin
(A.27)

(

xmax

xmin

)u

=
x

xmin

(A.28)

x = xu
max x1−u

min . (A.29)

For the LCD method, the estimated fraction of values ≥ x for the fitted distribution is

P(X ≥ x), which is 1−P(X < x) = 1−P(X ≤ x) = 1−F (x), since P(X < x) = P(X ≤ x)

for continuous distributions. The resulting slope for an unbounded power-law (xmax → ∞

with b < −1) is b+1, since we have log(1−F (x)) = (b+1) log x− (b+1) log xmin. For the

bounded power-law this result is approximately correct where x is small enough relative to

xmax.

For the MLE method the solid red curve in Figures 2(h) and 6(b) is plotted as (1− F (x))n.

This characterises the abundance size spectrum, and is more informative than plotting just

1−F (x), shown for the LCD method in Figure 2(g), because it includes the sample size, n.

It directly shows how abundance varies with body size, and is related to the abundance

density function N(x) defined in (3):

(1− F (x))n = n− nF (x) (A.30)

= n− n

∫ x

xmin

f(x)dx (A.31)

= n−

∫ x

xmin

nf(x)dx (A.32)

= n−

∫ x

xmin

N(x)dx. (A.33)

For the MLE method, the red curve in Figure 2(h) does not pass through the maximum

data point of 399; by definition it cannot. The maximum likelihood estimate for xmax is this
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maximum value of 399 (Section A.1.2). The red curve is plotted as (1− F (x))n, which at

x = xmax equals 0, because F (xmax) = 1 from equation (A.16). The logarithmic scale of the

y-axis in Figure 2(h) means that (1−F (xmax))n = 0 cannot be reached (since log 0 → −∞),

and so the red curve asymptotes to the vertical line x = xmax. The logarithmic y-axis is

used because the data are plotted in the same way as for the LCD method.

However, the MLE method does not depend on the axes used for plotting, and so in

Figure A.1 we re-plot Figure 2(h) but without logging the y-axis. This graphically shows

the good fit of the model, including through the x = 399 value. The red curve ends at

x = xmax = 399 because xmax is, by definition, the maximum valid value of the fitted model.

The red curve ends at 0 on the y-axis, but the data point has a value of 1 (since there is

just the one value ≥ 399, namely 399). This difference does not show up in Figure A.1,

but is magnified by the logarithmic y-axis in Figure 2(h).

This shows that the apparent poor fit to the x = 399 point in Figure 2(h), which the

reader’s eye can get drawn to, is an artefact of the logarithmic y-axis. The logarithmic

y-axis in Figure 2(h) is recommended because this is how researchers are used to seeing the

data when using the LCD method. And the fitted PLB model is straight over most of the

plot, which is analogous to the straight lines seen for the other methods that researchers

are used to. However, researchers may also wish to plot results in the form of Figure A.1

to aid understanding and interpretation.

A.1.4 Bin definitions in mizer

In the R package mizer (Scott et al., 2014) the user specifies bins by giving the lower

bounds of the smallest and largest bins (min w and max w) and also the number of bins

(no w). The lower bounds of the bins are then calculated as

w < −10̂ (seq(from = log10(min w), to = log10(max w), length.out = no w)) (A.34)

6



Values, x

N
um

be
r 

of
 v

al
ue

s
≥

x

1 10 1005 50 500

0
50

0
10

00

Figure A.1: Plot of Figure 2(h) but with a non-logarithmic y-axis. This shows that the

apparent poor fit of the model to the maximum data point at x = 399 in Figure 2(h) is an

artefact of the logarithmic y-axis, and that this data point is consistent with the model.
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and the final bin is then given the same width (on an arithmetic scale) as the penultimate

bin (F. Scott, pers. comm). Thus the lower bounds of the bins are equally spaced on a

log10 scale, as are the bin widths (except for the final bin).

The counts in each bin are calculated, and the slope of an abundance spectra is calcu-

lated as the slope of the linear regression of log(counts) against log(w). There is an option

to calculate a biomass spectra, for which counts in each bin are multiplied by the lower

bound of that bin, and then the linear regression is performed.

For a given data set, we wish to apply the method. Let xmin and xmax be the minimum

and maximum values in the data; we wish to use these values, respectively, for the lower

bound of the lowest bin and the upper bound of the highest bin (so that our bins exactly

span the data), for a total of k (= no w) bins. Given xmin, xmax and k > 1 we therefore need

to calculate the value of max w (the lower bound of the largest bin) to go into the mizer

bin calculation (A.34).

The first k−1 bins are equally spaced on a log10 scale; define log10 β to be the constant

bin width on the log10 scale, requiring that log10 β > 0 (and thus β > 1). Then the first

three bin breaks on the log10 scale are:

log10 xmin (A.35)

log10 xmin + log10 β = log10 βxmin (A.36)

log10 xmin + 2 log10 β = log10 β
2xmin (A.37)

log10 xmin + 3 log10 β = log10 β
3xmin. (A.38)
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On the arithmetic scale, all the bin breaks are thus

xmin (= min w) (A.39)

βxmin (A.40)

β2xmin (A.41)

β3xmin (A.42)

... (A.43)

βk−2xmin (A.44)

βk−1xmin (= max w) (A.45)

xmax. (A.46)

Thus, the constant log10 β bin width on the log10 scale translates to arithmetic bin widths

progressively increasing by a multiple of β > 1. We wish to solve for β (given that we

know xmin and xmax from the data and we specify k) such that the final two bins have equal

arithmetic width, i.e. such that

xmax − βk−1xmin = βk−1xmin − βk−2xmin (A.47)

0 = 2βk−1 − βk−2 −
xmax

xmin
(A.48)

0 = βk−2(2β − 1)−
xmax

xmin
. (A.49)

This cannot be solved algebraically for β, and thus needs to be solved numerically. We use

the R function nlm to minimise the log of the right-hand side of (A.49) to obtain β. Bin

breaks are then given by (A.39)-(A.46).

A.1.5 When determining slope of binned data on logarithmic

axes, the base of the logarithm does not matter

A log2 scale has sometimes been used to bin data in order to increase the number of bins

(compared to using log10 bins), but the resulting regressions were fitted based on log10 axes
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(presumably because log10 is more intuitive); e.g. Blanchard et al. (2005); Jennings et al.

(2007). The choice of using log2 or log10 for plotting and regression does not affect the

resulting calculated slope of the spectrum. For any quantity X ,

log2 X =
log10 X

log10 2
=

log10X

0.301
, (A.50)

and similarly for any quantity Y ,

log2 Y =
log10 Y

log10 2
=

log10 Y

0.301
. (A.51)

The resulting slope of the values plotted on log2 axes is

log2 Y

log2X
=

log10 Y

0.301
·

0.301

log10 X
=

log10 Y

log10 X
, (A.52)

which equals the slope on log10 axes. Thus the choice of logarithmic base to use for the axes

does not matter in the calculation of slopes. But note that the choice of logarithmic base

for binning of the data will affect the resulting slope, as shown by Vidondo et al. (1997).

A.1.6 Binning

Even though we stated the number of bins used, e.g. 8 for the Llin method, this can still give

an unambiguous result depending on how the statistical software defines the bin breaks.

For example, the range of the simulated data set is [1, 399], and so R, quite reasonably,

selected bin breaks of 0, 50, 100, ..., 400, to give 8 bins. However, another choice is having 8

bins that do not extend beyond the data (i.e. bin widths of (399− 1)/8 = 49.75, namely 1,

50.75, 100.5, ..., 399). This will only give a slightly different answer in this case. However,

if the simulated data set is restricted to values > 40, the hist(x, breaks=8) command in

R still selects bin breaks as 0, 50, 100, ..., 400. But in a plot, the first bin will appear to

cover values between 0 and 50, but in fact the data only has values > 40. Thus, this bin

may appear to be undersampled, but this is really an artefact of the bin-break selection.

This is another reason why it is desirable to avoid binning, in particular when estimating

parameter values.
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A.1.7 Likelihood function for the MLEbin method

Here we derive the likelihood function for the MLEbin method, which is to be used when

fitting a bounded power law to data when the data are only available in binned form. We

extend and generalise the derivations from Edwards et al. (2007) and Edwards (2011) to

allow for any type of binning. The aim is to obtain the likelihood functions to calculate

the maximum likelihood estimate for the exponent b in (1).

Consider the data to consist of a count (number of individuals) dj in each bin j = 1, 2, 3, ..., J ,

defining J to be the index of the final bin. Let bin j cover the values of x (weight or length)

in the interval [wj, wj+1), such that w1, w2, ..., wJ+1 define the bin breaks. For example, bin

j = 5 goes from w5 to w6. For bin j = J the interval is [wJ , wJ+1], which includes the upper

bound. The sample size (total number of individuals) is n =
∑J

j=1 dj , and we assume that

the first and last bins each have at least one individual in them (i.e. d1, dJ > 0).

Similar calculations to those by Edwards et al. (2012) for unbinned data show that the

known w1 and wJ+1 are the maximum likelihood estimates for xmin and xmax, respectively.

So by setting xmin = w1 and xmax = wJ+1 we now only need to calculate the maximum

likelihood estimate of b.

For a single data value, the probability of being in bin j given the parameter b (assume

for now that b 6= −1) is

P(being in bin j|b) =

∫ wj+1

wj

Cxbdx (A.53)

=
C

b+ 1

[

xb+1
]wj+1

wj
(A.54)

=
C

b+ 1

[

wb+1
j+1 − wb+1

j

]

(A.55)

=
wb+1

j+1 − wb+1
j

x b+1
max − x b+1

min

, (A.56)

=
wb+1

j+1 − wb+1
j

wb+1
J+1 − wb+1

1

, (A.57)

substituting C from (2) to obtain (A.56). Note that these probabilities sum to 1 (because
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a data value must be in one of the bins):

J
∑

j=1

P(being in bin j|b) =

J
∑

j=1

wb+1
j+1 − wb+1

j

wb+1
J+1 − wb+1

1

(A.58)

=
1

wb+1
J+1 − wb+1

1

J
∑

j=1

(

wb+1
j+1 − wb+1

j

)

(A.59)

=
1

wb+1
J+1 − wb+1

1

(

J
∑

j=1

wb+1
j+1 −

J
∑

j=1

wb+1
j

)

(A.60)

=
1

wb+1
J+1 − wb+1

1

(

J−1
∑

j=1

wb+1
j+1 + wb+1

J+1 −

J
∑

j=2

wb+1
j − wb+1

1

)

(A.61)

=
1

wb+1
J+1 − wb+1

1





�
�
�
��J−1

∑

j=1

wb+1
j+1 + wb+1

J+1 −

�
�
�
��J−1

∑

j=1

wb+1
j+1 − wb+1

1



 (A.62)

= 1. (A.63)

Given the counts {dj}
J
j=1 in each bin, the multinomial log-likelihood function (Lawless,

2003) is

l(b|d1, d2, d3, ..., dJ) =
J
∑

j=1

dj log [P(being in bin j|b)] (A.64)

=

J
∑

j=1

dj log

(

wb+1
j+1 − wb+1

j

wb+1
J+1 − wb+1

1

)

(A.65)

=

J
∑

j=1

dj
(

log
∣

∣wb+1
j+1 − wb+1

j

∣

∣− log
∣

∣wb+1
J+1 − wb+1

1

∣

∣

)

(A.66)

=
J
∑

j=1

dj log
∣

∣wb+1
j+1 − wb+1

j

∣

∣−
J
∑

j=1

dj log
∣

∣wb+1
J+1 − wb+1

1

∣

∣ (A.67)

=

J
∑

j=1

dj log
∣

∣wb+1
j+1 − wb+1

j

∣

∣− log
∣

∣wb+1
J+1 − wb+1

1

∣

∣

J
∑

j=1

dj (A.68)

=

J
∑

j=1

dj log
∣

∣wb+1
j+1 − wb+1

j

∣

∣− n log
∣

∣wb+1
J+1 − wb+1

1

∣

∣ (A.69)

= −n log
∣

∣wb+1
J+1 − wb+1

1

∣

∣ +
J
∑

j=1

dj log
∣

∣wb+1
j+1 − wb+1

j

∣

∣ . (A.70)
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The two terms inside the absolute symbols | · |, i.e. wb+1
j+1−wb+1

j and wb+1
J+1−wb+1

1 , are both

positive for b < −1 and both negative for b > −1 (because wj+1 > wj and wJ+1 > w1

by definition), such that taking their absolute values ensures that (A.65) and (A.66) are

equivalent. Equation (A.70) cannot be analytically solved to give the maximum likelihood

estimate of b (by differentiating with respect to b and setting to 0), and so numerical

methods are required.

For the case where b = −1, we have C = 1/(log xmax− log xmin) = 1/(logwJ+1− logw1),

and

P(being in bin j|b = −1) =

∫ wj+1

wj

Cx−1dx (A.71)

= C [log x]wj+1

wj
(A.72)

=
logwj+1 − logwj

logwJ+1 − logw1
. (A.73)

The log-likelihood function is then just

l(b = −1|data) =

J
∑

j=1

dj log [P(being in bin j|b = −1)] (A.74)

=
1

logwJ+1 − logw1

J
∑

j=1

dj (logwj+1 − logwj) . (A.75)

In Figure 5 we show results from setting bin breaks at 1, 2, 4, 8, ..., 1024 (so we have

w1 = 1, w2 = 2, w3 = 4, w4 = 8, ..., wJ+1 = 1024). Note that for some simulated data sets

the final bin break will be 512 or lower if there are no simulated values > 512 (or > 256

or > 128 etc.), as in Figures 1 and 2. But our approach (and R code) is applicable to any

set of bin breaks. Thus, it can be used for any data set for which measurements are only

available in binned form, including historical data sets.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2nd ed., Wiley

series in Probability and Statistics, Wiley, New Jersey.
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A.2 Further results from the numerical simulations in

the main text

A.2.1 Estimating xmax in each of the 10,000 simulated data sets

For each of the 10,000 simulated data sets, for the MLE method we calculated the MLE of

xmax separately for each data set (the MLE simply being the maximum value of the data

in that data set). Figure A.2 shows that there is no relationship between the MLE of b and

the MLE of xmax. So, for example, for a simulated data set with a maximum value of 200,

the MLE of xmax is 200, yet this seems to have no influence on the MLE method’s estimate

of b.

A.2.2 The MLEfix method

However, for real data sets we might want to fix xmax across data sets. For example, for

body masses that are sampled similarly from year-to-year, we might set xmax to be the

largest body mass seen across all years, since we know such a value is attainable, rather

than estimate xmax separately for each year. We call this the MLEfix method – instead of

estimating xmax as the maximum value of the data set being fitted, we fix it to some value.

In Figure A.3(b) we show the equivalent results to Figure 3(h) for the MLEfix method

(with the original MLE method’s results in Figure A.3(a) for comparison). The MLEfix

method fixes xmax to the true value of 1,000, and consequently performs marginally better

(51% rather than 44% of the estimated values lie below the true value of −2, though the 5

and 95% quantiles are slightly worse), but otherwise both methods perform well. A similar

conclusion is reached from the confidence intervals in Figure A.4.

Figure A.5 repeats Figure A.2 but for the MLEfix method. The x-axis is now labelled

as the maximum of x from each data set (although the values are the same as in Figure A.2
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because these equal the MLE of xmax). There is a statistically significant trend in the MLE

of b with respect to the maximum of the data set. This make sense – the MLEfix method

is being told that xmax = 1, 000. But for a particular data set that has a maximum x of,

say, only 200, there are no values between 200 and 1,000, and so the method will tend

to produce a slightly steeper power law than if higher values had been observed. Similar

results were found for real data in Supplementary Tables 1 and 2 of Edwards et al. (2007).

However, here, while the estimated trend in the MLE of b with respect to the maximum

x is significantly different to zero, it is small. Its value of 2.4 × 10−5 equates to an overall

increase in b of only 0.024 for an 1,000-fold increase in the maximum of x. Such a minor

change is smaller than the general variability of the estimated b in Figure A.5, and smaller

than the uncertainty accounted for in the confidence intervals in Figure A.4 (which have a

minimum width of 0.11 across both methods). Thus, we conclude that while the trend in

Figure A.5 is statistically significant, it is not ecologically significant.

Thus, for the simulated data sets it appears that the MLE and MLEfix methods yield

only minor numerical differences in results, which would not translate into meaningful

changes in ecological interpretation. For real data such sensitivity could be tested, and the

final choice of method justified depending on the type of data.
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Figure A.2: Relationship between maximum likelihood estimate (MLE) of b and MLE of

xmax for each of the 10,000 simulated data sets used in Figure 3. The red line is a fitted

linear regression (with confidence intervals), and the fitted slope of 1.3 × 10−6 (standard

error 1.5 × 10−6) is not significantly different from zero (p = 0.39, R2 < 10−4). The MLE

of xmax for each data set is simply the maximum value in that data set. It appears here

that a lower maximum value does not influence the estimation of b.
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Figure A.3: As for Figure 3 but for just the MLE and MLEfix methods. The MLEfix

method fixes xmax = 1, 000 rather than estimating it separately for each of the 10,000

simulated data sets. The histograms looks similar, and the statistics for the estimated b

(as in Table 2) for the MLEfix method are: 5% quantile is −2.06, median and mean are

both −2.00, 95% quantile is −1.95, and 51% of the values lie below the true value of −2.

So the statistics are very similar to the MLE method, except for the final one which is

closer to the desired 50% than all methods.
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Figure A.4: As for Figure 4 but for just the MLE and MLEfix methods. The confidence

intervals for both methods demonstrate the ideal observed coverage of 95%. Thus the

MLEfix method performs just as well as the MLE method.
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Figure A.5: As for Figure A.2, using the same 10,000 simulated data sets, but for the

MLEfix method. The estimated slope of 2.4 × 10−5 (s.e. 1.5 × 10−6) is now significantly

different from zero (p =< 10−15, R2 = 0.025). So now a lower maximum realised value for a

data set does statistically influence the estimation of b, as expected, although ecologically

such a small slope is not important.
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A.2.3 Increasing xmax to 10,000 in the simulated data sets

The results in the main text (except for the gold histograms in Figure 3) used simulated

data sets with xmax = 1, 000. Here we test the sensitivity to that choice, and show the

equivalent results for xmax = 10, 000, still with xmin = 1.

For xmax = 10, 000, Figure A.6 shows the standard histogram. Figure A.7 shows the

resulting estimates of slopes and/or b for a single data set, and Figure 3 already shows the

estimated values of b for 10,000 randomly generated data sets (the statistical results are

given in Table A.1). The histograms of estimated b in Figure 3 for the LBmiz, LBbiom and

LBNbiom methods have drifted to the right compared to Figure 3, showing that they are

less accurate with the increase in xmax. The LCD method remains fairly accurate but with

40%, rather than 59%, of estimated values of b being < −2. The confidence intervals in

Figure A.8 show worse observed coverage for the LBmiz, LBbiom and LBNbiom methods,

with the MLE method again showing the desired 95% observed coverage.

For the MLEfix method and xmax = 10, 000, the histogram of estimates of b and the

plot of confidence intervals are essentially identical to those in Figures A.3 and A.4 for

xmax = 1, 000 and are not shown.

The equivalent figures to A.2 and A.5 are shown in Figure A.9, to investigate the effects

of estimating xmax as the maximum data value for each simulated data set (the MLE

method), or fixing it to xmax = 10, 000 (the MLEfix method). Although the regression

slopes are significantly different to zero for both methods, the magnitudes of the change in b

across the range 1-10,000 are only 0.0051 and 0.024, respectively. So, as with xmax = 1, 000,

the trends are statistically but not ecologically significant.
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Table A.1: As for Table 2 but for simulations with xmax = 10, 000, corresponding to the

gold histograms in Figure 3.

Method Slope 5% quantile Median Mean 95% quantile Percentage

represents below -2

Llin – -0.02 0.00 -0.01 0.00 0

LT b -3.02 -2.44 -2.48 -2.06 98

LTplus1 b -2.74 -2.18 -2.21 -1.77 72

LBmiz b+ 1 -2.08 -1.94 -1.94 -1.82 24

LBbiom b+ 2 -2.07 -1.93 -1.93 -1.80 20

LBNbiom b+ 1 -2.07 -1.93 -1.93 -1.80 20

LCD b+ 1 -2.06 -1.99 -1.99 -1.92 40

MLE b -2.05 -1.99 -2.00 -1.94 43

Values, x

C
ou

nt
 in

 e
ac

h 
bi

n

0 200 400 600

0
4

8
99

2
99

6

Figure A.6: Standard histogram of a random sample of 1,000 values from a bounded power-

law distribution with known exponent b = −2, xmin = 1 and xmax = 10, 000. So as for

Figure 1 but with xmax increased ten-fold. Note that we specified eight bins again for the

histogram, but the hist() command in R selected only seven for this data set (to have

widths of 100), of which three are empty.
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Figure A.7: As for Figure 2 but with xmax = 10, 000.
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Figure A.8: As for Figure 4 (with the same axes) but with xmax = 10, 000, showing the

confidence intervals for each method.
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Figure A.9: As for Figures A.2 and A.5 but with xmax = 10, 000. For both cases the slope of

the fitted regression is significantly different from 0: (a) slope is 5.1×10−7 (s.e. 1.6×10−7),

p = 0.002, R2 = 0.001; (b) slope is 2.4× 10−6 (s.e. 1.6× 10−7), p < 10−15, R2 = 0.022.
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A.2.4 Setting b = −2.5 in the simulated data sets

We now set b = −2.5 (with other values as in the main text), which represents a steeper

size spectrum slope than for our default of b = −2. Analogous results to those in the main

text are in Figures A.10, A.11, A.12 and Table A.2.

For the single simulated data set (Figure A.10) there are no sample values > 100,

even though xmax = 1, 000. This is because with b = −2.5 there is very little chance of

obtaining values in the tail (i.e. very few big fish, with ‘big’ defined as > 100 times larger

than the smallest fish of size 1). To be precise, P(X ≤ 100) = 0.9990316 [using our R

code: pPLB(100, b=-2.5, xmin=1, xmax=1000)]. Raising this to the power 1,000 (for

1,000 fish) gives 0.38, which is the probability that all 1,000 random fish sizes are < 100.

Thus, we would expect to see at least one fish size > 100 in only 62% of random samples of

1,000 sizes with b = −2.5. For b = −2 the equivalent percentage is 99.99%, demonstrating

the dramatic influence of the value of b (and further demonstrating the need for accurate

estimation of b).

For the 10,000 simulations, the resulting distributions of estimated b are wider (Fig-

ure A.11 and Table A.2) than for when b = −2. For the LT method the distribution is less

biased (more centered around the true value of b), but for the LTplus1, LBmiz, LBbiom

and LBNbiom the distributions are more biased. In particular, for the LBmiz, LBbiom

and LBNbiom methods, for b = −2 the medians and means were within 0.01 of b = −2,

but for b = −2.5 they are ≥ 0.09 away from the true value. The distributions for the LCD

and MLE methods remain centered around the true value of b.

Compared to the b = −2 results, the observed coverage of the 95% confidence intervals

is slightly better (closer to the desired 95%) for the LT and LTplus1 methods (Figure A.12).

But it is worse for the LBmiz, LBbiom and LBNbiom methods, and remains the same for

the LCD (6%) and MLE (95%) methods. Thus, as for b = −2, the MLE method is the

only one for which the confidence intervals exhibit the desired 95% observed coverage.
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Table A.2: As for Table 2 but for simulations with b = −2.5, corresponding to the his-

tograms in Figure A.11.

Method Slope 5% quantile Median Mean 95% quantile Percentage

represents below -2.5

Llin - -0.13 -0.05 -0.05 -0.01 0

LT b -2.98 -2.49 -2.51 -2.15 48

LTplus1 b -2.74 -2.27 -2.30 -1.91 21

LBmiz b+ 1 -2.61 -2.40 -2.40 -2.17 22

LBbiom b+ 2 -2.64 -2.41 -2.41 -2.15 26

LBNbiom b+ 1 -2.64 -2.41 -2.41 -2.15 26

LCD b+ 1 -2.59 -2.48 -2.48 -2.38 39

MLE b -2.57 -2.49 -2.49 -2.42 43
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Figure A.10: As for Figure 2 but with b = −2.5.
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Figure A.11: As for Figure 3 but with b = −2.5.
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Figure A.12: As for Figure 4 but with b = −2.5, showing the confidence intervals for each

method.
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A.2.5 Setting b = −1.5 in the simulated data sets

We now set b = −1.5 (with other values as in the main text), which represents a shallower

size spectrum slope than for our default of b = −2. Analogous results to those in the main

text are in Figures A.13, A.14, A.15 and Table A.3.

Compared to the results with b = −2, the LCD method has performed noticeably worse

(Figure A.14(g)), with all 100% of the estimates of b lying below the true value of b = −1.5,

compared to 59% for b = −2. The higher value of b gives more random values in the tail

of the distribution (Figure A.13), close to the upper bound of xmax = 1, 000. The LCD

cannot fit these values because it implicitly assumes an unbounded power-law rather than

a bounded one, but there are no values > xmax = 1, 000. Such values would be expected

for an unbounded power law: P(X ≤ 1, 000) for a single value from an unbounded power-

law is, using our R code, pPL(1000, b=-1.5, xmin=1) giving 0.968, which when raised

to 1,000 is 10−14; i.e. essentially zero probability that all values are < 1, 000. The LBmiz

method performs somewhat worse than for b = −2 (Table A.3), and the distributions for

the LBbiom and LBNbiom are shifted slightly away from being centered around the true

value of b. The ranges of distributions for all methods are narrower than for b = −2, but

only the distribution for the MLE method remains centered around the true value of b.

The observed coverage of the 95% confidence intervals is slightly closer to the desired 95%

for the LBbiom and LBNbiom methods, and for the MLE method remains at the desired

95% level (Figure A.15).
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Table A.3: As for Table 2 but for simulations with b = −1.5, corresponding to the his-

tograms in Figure A.14.

Method Slope 5% quantile Median Mean 95% quantile Percentage

represents below -1.5

Llin - -0.01 -0.01 -0.01 0.00 0

LT b -2.24 -2.03 -2.04 -1.83 100

LTplus1 b -2.07 -1.89 -1.89 -1.73 100

LBmiz b+ 1 -1.61 -1.55 -1.55 -1.50 93

LBbiom b+ 2 -1.56 -1.51 -1.51 -1.46 60

LBNbiom b+ 1 -1.56 -1.51 -1.51 -1.46 60

LCD b+ 1 -1.66 -1.63 -1.63 -1.60 100

MLE b -1.53 -1.50 -1.50 -1.47 47
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Figure A.13: As for Figure 2 but with b = −1.5.
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Figure A.14: As for Figure 3 but with b = −1.5.
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Figure A.15: As for Figure 4 but with b = −1.5, showing the confidence intervals for each

method.
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A.2.6 Setting b = −0.5 in the simulated data sets

We now set b = −0.5, which represents an even shallower size spectrum slope than the

previous b = −1.5, and is in the vicinity of the values of around −0.22 estimated by

Graham et al. (2005) using the LTplus1 method. Analogous results to those in the main

text are in Figures A.16, A.17, A.18 and Table A.4.

Compared to the results with b = −1.5, the LBbiom and LBNbiom methods have actu-

ally improved in accuracy (Figure A.17 and Table A.4), whereas they had slightly worsened

from b = −2 to b = −1.5. The MLE method retains the accuracy it had for b = −1.5 while

the remaining methods remain poor, almost always over- or under-estimating the value of b

(Table A.4). Compared to b = −1.5, the observed coverage of the 95% confidence intervals

is the same (at 92%) for the LBbiom and LBNbiom methods, and remains at the desired

95% level for the MLE method (Figure A.18).

Table A.4: As for Table 2 but for simulations with b = −0.5, corresponding to the his-

tograms in Figure A.17.

Method Slope 5% quantile Median Mean 95% quantile Percentage

represents below -0.5

Llin - 0.00 0.00 0.00 0.00 0

LT b -0.62 -0.57 -0.57 -0.51 98

LTplus1 b -0.62 -0.56 -0.56 -0.51 97

LBmiz b+ 1 -0.61 -0.57 -0.57 -0.53 99

LBbiom b+ 2 -0.55 -0.50 -0.50 -0.45 51

LBNbiom b+ 1 -0.55 -0.50 -0.50 -0.45 51

LCD b+ 1 -1.48 -1.46 -1.46 -1.44 100

MLE b -0.53 -0.50 -0.50 -0.47 53
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Figure A.16: As for Figure 2 but with b = −0.5.
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Figure A.17: As for Figure 3 but with b = −0.5.
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Figure A.18: As for Figure 4 but with b = −0.5, showing the confidence intervals for each

method.
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A.2.7 Setting n = 10, 000 in the simulated data sets

We now set the sample size n = 10, 000 (with other values as in the main text) to test the

effects of a ten-fold increase in sample size. Analogous results to those in the main text are

in Figures A.19, A.20, A.21 and Table A.5.

Compared to the original results with n = 1, 000, for n = 10, 000 the range of estimates

of b is tighter around the true b = −2 for the LBmiz, LBbiom, LBNbiom, LCD and MLE

methods (Figure A.20 and Table A.5). However, all except the MLE method now have at

least 59% of the estimates being below the true value. The observed coverage of the 95%

confidence intervals has actually worsened (further away from the desired 95% value) for

all methods, though only to 94% for the MLE method (Figure A.21 compared to Figure 4).

The confidence intervals have become narrower for all methods with the increase in sample

size.

Table A.5: As for Table 2 but for simulations with n = 10, 000, corresponding to the

histograms in Figure A.20.

Method Slope 5% quantile Median Mean 95% quantile Percentage

represents below -2

Llin - -0.01 -0.01 -0.01 -0.01 0

LT b -3.12 -2.89 -2.89 -2.68 100

LTplus1 b -2.94 -2.71 -2.72 -2.55 100

LBmiz b+ 1 -2.10 -2.03 -2.04 -1.98 85

LBbiom b+ 2 -2.07 -2.01 -2.01 -1.96 59

LBNbiom b+ 1 -2.07 -2.01 -2.01 -1.96 59

LCD b+ 1 -2.04 -2.02 -2.02 -2.00 95

MLE b -2.02 -2.00 -2.00 -1.98 48
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Figure A.19: As for Figure 2 but with n = 10, 000.
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Figure A.20: As for Figure 3 but with n = 10, 000. Note that there are 180 estimated b

values below the minimum shown for the LT method, and 15 for the LTplus1 method; this

is to keep the x-axes the same as in Figure 3. The bin widths change slightly from Figure 3,

but still ensure that b = −2 is in the centre of a bin. The y-axes are the same for all panels

here.
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Figure A.21: As for Figure 4 but with n = 10, 000, showing the confidence intervals for

each method.
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A.2.8 Re-running with a different seed

We fixed the seed of the random-number generator to 42, to enable reproduction of all

results. However, because of the way that random numbers are generated, care has to

be taken to ensure results are not dependent on the seed. For example, Figures 1 and

A.6 have xmax = 1, 000 and xmax = 10, 000, respectively, with everything else the same

(seed set to 42, n = 1, 000, xmin = 1 and b = −2). However, because the seed generates

the same sequence of 1,000 random uniform numbers (which are then used to generated

the bounded power-law numbers), the resulting samples of 1,000 power-law numbers are

very similar. Taking the element-wise ratio of the two samples, we find that 91.5% of the

xmax = 1, 000 samples are > 99% of their respective xmax = 10, 000 values (e.g. the first

element in each sample is 11.61322 and 11.72533, which is a ratio of > 99%). This suggests

that the similarities seen between the black and gold histograms in Figure 3 could be partly

due to the same seed being used.

As seen in Figure A.6, the maximum sample value for xmax = 10, 000 is < 700. Even

though we allow values up to 10,000, the nature of power-law distributions is that values

> 1, 000 will be rare. From (A.16) with xmax = 10, 000, we calculate P(X ≤ 1000) =

0.9990999 [using our R code: pPLB(1000, b=-2, xmin=1, xmax=10000)]. Raising this to

the power 1,000 gives 0.41, which is the probability that all 1,000 random numbers are

< 1, 000. Thus, in only 59% of random samples of 1,000 numbers with xmax = 10, 000

would be expect to see a value > 1, 000. Changing xmax from 1,000 to 10,000 does not

guarantee we will obtain any values > 1, 000, and because of the potential influence of

occasional large numbers (a consequence of power-law distributions) on the methods, we

need to be careful about the seed.

To ensure that our conclusions are not dependent on the seed, we have re-run all main

code with a different seed. However, the results and general conclusions do not change

(or any changes are minimal). For example, with the seed set to 43, Table 2 is identical,
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except that five of the statistics related to b change by ≤ 0.01 and three of the percentages

change by 1% (although the actual changes will be even less because the reported values

are rounded). And all observed coverage values in Figure 4 and Figure A.8 are unchanged.

Therefore, our results and conclusions appear robust to the choice of seed.

A.2.9 Subsampling of confidence intervals

For the confidence interval plots such as Figure 4 we present subsamples of the 10,000

calculated confidence intervals, since plotting all 10,000 intervals is not feasible. For each

method, the 10,000 confidence intervals are ranked in increasing value of the lower bound

of the interval, and then the subsample is taken as the samples with ranks 1, 34, 67, ...,

9,967 and 10,000, so as to include samples 1 and 10,000 (i.e. the intervals with the smallest

and largest lower bounds). This yields 304 intervals for each method, giving adequate

resolution when the intervals are plotted as horizontal lines. The left endpoints (lower

bounds) create a smooth monotonically increasing curve as the sample number increases

because the samples are ranked by the lower bounds; the right endpoints (upper bounds)

do not have to be monotonically increasing.
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