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a b s t r a c t

We estimate recent (1992–2005) trends in relative abundance for Northwest Atlantic oceanic and large
coastal sharks, using generalized linear mixed models to standardize catch rates of eight species groups
as recorded by U.S. pelagic longline fishery observers. Models suggest precipitous (76%) declines in ham-
merhead (Sphyrna species) and large coastal (dusky, night, and silky shark, genus Carcharhinus) species,
and moderate declines (53%) in blue and oceanic whitetip sharks over this period. In contrast, mako
and thresher sharks appear to have stabilized, and the tiger shark population appears to be increasing.
A comparison of nominal shark catch rates from this fleet’s observer and logbook data (to evaluate the
veracity of trends previously estimated from the latter) showed a high degree of concordance for each
species group, both in individual sub-areas and overall. Models of these two datasets for the common
time period (1992–2000) show that compared to the observer data the logbook data indicate greater
declines for some species, but lesser declines for others. Signs of recovery for some shark species are
encouraging, but must also be set in the context of the significant declines that occurred in previous
decades.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Concern about increased exploitation of sharks, coupled with
the inherent vulnerability to overexploitation of many of these
species, has brought this group of fishes to the forefront of marine
conservation in recent years (FAO, 1998, 2000; Musick et al., 2000;
ICCAT, 2004; CITES, 2006; Anon, 2009). Large pelagic sharks are cir-
cumglobally distributed top predators and among the most heavily
exploited sharks (Camhi et al., 2008a; Dulvy et al., 2008). Species
in this group, which includes wide-ranging oceanic sharks such as
blue (Prionace glauca) and mako (Isurus species) and more coastal
tiger (Galeocerdo cuvier) and hammerhead (genus Sphyrna) species,
comprise the majority of those traded in Asia’s shark fin trade
(Clarke et al., 2006) and are also increasingly sought after for their
meat (Hareide et al., 2007).

Quantifying the impacts of exploitation remains a challenge for
most shark populations because of a paucity of data (Camhi et al.,
2008a). Few stock assessments have been conducted for sharks, and
results for many of those that have been were uncertain (e.g. ICCAT,
2008). Indices of abundance are key components of the complex
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population dynamics models used in stock assessments (Maunder
and Punt, 2004), and also important indicators of the direction and
magnitude of changes in abundance for the many shark species for
which there are inadequate catch records and biological informa-
tion to conduct stock assessments.

Estimating unbiased indices of abundance for large pelagic
sharks is, however, complicated by several factors (Camhi et al.,
2008b). Distributed in epipelagic and upper mesopelagic waters,
these species are rarely caught in fishery-independent research
surveys. Surveys that have sampled sharks often are limited by
low sample size to provide estimates only for the most frequently
caught coastal species. Conversely, fisheries sample intensely over
large regions closer in size to the geographic ranges of shark popu-
lations, but are much more variable than designed research surveys
making standardization of the catch rates a challenge (Maunder and
Punt, 2004; Bishop, 2006). What is more, there is a dearth of long-
term fishery-dependent data for sharks: most commercial fisheries
began recording shark catches at the species level only in the 1990s,
and reliable species identification remains a challenge. There also is
a tradeoff between logbook data, which are self-reported by fisher-
men, and scientific observer data, which should be more accurate
but often monitor only a small proportion of commercial fleets.
The situation is exacerbated for oceanic sharks because much of
their exploitation occurs on the high seas, where their catches are
unrestricted and often un- or under-reported (Camhi et al., 2008b).

In the Northwest Atlantic Ocean, one of the most data-rich
regions for sharks, many large pelagic shark species appear to
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have declined significantly (Musick et al., 1993; Simpfendorfer et
al., 2002; Baum et al., 2003; Ha, 2006; Myers et al., 2007; Aires-
da-Silva et al., 2008). For example, two dedicated shark-targeted
longline surveys conducted annually on the U.S. east coast since
1972 and 1974 respectively, have provided valuable multi-decadal
records for many large coastal shark species; analyses of these data
indicate substantial declines in dusky, tiger, blacktip and sandbar
sharks (Ha, 2006; Myers et al., 2007). Examination of fisheries log-
books from 1986 to 2000 also suggested significant changes in large
pelagic shark population abundance in this region, ranging from
40% declines for two mako shark species up to 89% declines for three
hammerhead species (Baum et al., 2003). In those analyses, gener-
alized linear models (GLM) were fitted to the non-zero catches with
the truncated negative binomial distribution to avoid the potential
bias of any change in fishermen’s tendency to record shark catches
over time (Baum et al., 2003). Six additional analyses using differ-
ent statistical distributions and subsets of the data (based on the
tendency of sharks to be recorded on different vessels) led to some
quantitative differences in trends, but similar conclusions of sig-
nificant declines in abundance (Baum et al., 2003, Supplementary
Online Material). That research has, however, been criticized for
inferring trends in abundance from a single data source, particu-
larly since the data were from logbooks (Burgess et al., 2005, but
see rebuttal in Baum et al., 2005, and analyses of additional data
sources in Myers et al., 2007).

To address these concerns and to examine more recent changes,
here we build upon this earlier research by using the U.S. Atlantic
pelagic longline fishery’s observer monitoring program data: (i) to
describe the spatial distribution and concentrations of large pelagic
sharks in the Northwest Atlantic Ocean, (ii) to estimate trends in
their relative abundance using the most recent available observer
data (1992–2005), (iii) to compare these data and estimates to those
from the same fleet’s logbook data, and (iv) to suggest improve-
ments for future observer data collection and models.

2. Methods

2.1. Data and shark species

The U.S. Atlantic pelagic longline fishery is the major source of
exploitation for large pelagic fishes off North America’s east coast
(Hoey and Moore, 1999; Beerkircher et al., 2002; Mandelman et al.,
2008). The fleet primarily targets swordfish (Xiphias gladius) and
yellowfin tuna (Thunnus albacares); substantial numbers of sharks
are also caught, mainly as bycatch.

We obtained the observer and logbook data for this fleet, both
of which include counts of the sharks caught per longline set. The
logbook dataset used here is identical to that of Baum et al. (2003),
spanning from 1986 to 2000, and comprising over 214,000 sets and
110 million hooks. Scientific sampling of the fleet was initiated in
1992 under the National Marine Fisheries Service’s (NMFS) Pelagic
Observer Program (POP), and observers have monitored between
2.2 and 11.5% of the sets (mean = 5.5%) in the fishery each year
since (Beerkircher et al., 2004). We obtained the observer data from
NMFS Southeast Fisheries Science Center (SEFSC), and met with
and emailed POP staff to discuss the fishery, observer program, and
dataset. These data were available from 1992 to 2005 and (exclud-
ing sets in the experimental fishery conducted to test measures for
reducing sea turtle bycatch) totaled 6952 sets and over 4.8 million
hooks. Detailed information on this observer program is available
on the NMFS SEFSC website (http://www.sefsc.noaa.gov/pop.jsp).

Both datasets underwent extensive checks prior to analyses.
Logbook data corrections and selection criteria are detailed in Baum
(2002) and Baum et al. (2003); notable among these was the exclu-
sion of sets that used bottom longline gear (to target large coastal

Table 1
Total number of each shark species recorded in the U.S. Atlantic pelagic longline
observer program between 1992 and 2005. Analyzed species are classified as either
oceanic or large coastal sharks according to the U.S. Atlantic Highly Migratory
Species Fishery Management Plan (NMFS, 2006). Species are grouped as in analyses.
Species recorded fewer than 5 times not shown.

Species Number caught

Common name Latin name

Oceanic sharks
Blue Prionace glauca 28,317
Mako sharks Isurus species 3,433
Shortfin mako I. oxyrinchus 2,705
Longfin mako I. paucus 217
Unidentified makos I. species 511
Thresher sharks Alopias species 921
Bigeye thresher A. superciliosus 627
Common thresher A. vulpinus 148
Unidentified thresher A. species 146
Oceanic whitetip Carcharhinus longimanus 506
Porbeaglea Lamna nasus 192

Large coastal sharks
Hammerhead sharks Sphyrna species 1,292
Scalloped hammerhead S. lewini 742
Great hammerhead S. mokarran 93
Smooth hammerhead S. zygaena 15
Unidentified hammerhead S. species 442
Tiger shark Galeocerdo cuvier 1,190
Coastal group 1b Carcharhinus species 7,212
Dusky shark C. obscurus 1,924
Night shark C. signatus 1,649
Silky shark C. falciformis 3,639
Coastal group 2b Carcharhinus species 9,799
Bignose shark C. altimus 47
Blacktip shark C. limbatus 125
Bull shark C. leucas 42
Sandbar shark C. plumbeus 550
Spinner shark C. brevipinna 31
Sand tiger sharka Carcharias taurus 6

Other shark species
Atlantic sharpnose sharka Rhizoprionodon terraenovae 20
Collared dogfisha – 6
Crocodile sharka Pseudocarcharias kamoharai 162
Reef sharka – 7
Smooth dogfisha Mustelus canis 59
Spiny dogfisha Squalus acanthias 95
Unidentified dogfisha – 38

Unidentifiedsharks

Unidentified requiem sharks Carcharhinus species 179
Unidentified sharks – 1,613

Total (all sharks) 46,052

a Species not included in analysis because of small sample size.
b Coastal group 1 includes dusky, night, silky shark. Coastal group 2 includes

Coastal group 1, plus bignose, blacktip, bull, sandbar, spinner and all unidentified
sharks.

sharks) or pelagic longline gear to directly target sharks. There were
no bottom longline sets in the observer data, and we excluded the
few shark-targeted pelagic sets (n = 32) because their uneven distri-
bution in the time series and high shark catches could have biased
conclusions about shark population trends. We performed sum-
mary statistics, plots, and range checks on all variables of interest
in the observer data, and corrected obvious errors. For example,
implausible dates and locations (e.g. on land) could often be cor-
rected using information from other sets on the same fishing trips.
Any outstanding queries were discussed with POP staff and cor-
rected wherever possible.

Observers have recorded over twenty-five shark species in this
fishery (Table 1). Blue, tiger, and oceanic whitetip sharks are eas-
ily identified and were caught in sufficient numbers to model their
catch rates (Table 1). Hammerhead (Sphyrna spp.), thresher (Alopias
spp.), mako (Isurus spp.), and requiem (Carcharhinus spp.) sharks

http://www.sefsc.noaa.gov/pop.jsp
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were modelled at the genus level, because observers identified a
substantial proportion of them only to this taxonomic level (e.g. 34%
of hammerhead sharks, 16% of thresher sharks, and 15% of mako
sharks; Table 1). Reliable identification of species in these genera
can be difficult during fisheries sampling even for trained observers
because much fishing effort occurs at night and sharks are generally
not brought onboard (L. Beerkircher, NMFS SEFSC, personal com-
munication). In addition, a systematic bias occurred in observers’
recording of requiem sharks (genus Carcharhinus) whereby night
shark (C. signatus) was often recorded as ‘unidentified shark’ or
misidentified as dusky (C. obscurus) or silky (C. falciformis) shark
until species identification training improved in the late-1990s (L.
Beerkircher, personal communication; Beerkircher et al., 2002). To
address this problem, NMFS added a new species code, ‘unidenti-
fied requiem shark’, to the observer data collection system in 2004.
Because trends for individual Carcharhinus species might reflect
these trends in observers’ recording tendencies rather than in the
relative abundance of the species, we modelled them in two group-
ings encompassing the two extreme possibilities, first by including
only the three most commonly recorded species (dusky, silky, and
night sharks), and second by grouping these three species with
other recorded Carcharhinus species and all unidentified sharks
(Table 1). Herein, we use the word “species” to refer to species
groups as well as to individual species.

We divided the sampled region of the Northwest Atlantic into
the same nine areas as Baum et al. (2003) so the two could be eas-
ily compared, but excluded records from Area 9 because observer
monitoring occurred there only from 1996 to 1999, on a few sets
(n = 62).

2.2. Shark catch rates in U.S. pelagic longline observer and
logbook data

We compared unstandardized shark catch rates among species
and areas in the 1992–2005 observer data, and between the
observer and logbook data for the common time period of avail-
able data,1992–2000. Comparisons of shark catch rates between
these two data sources on a set-by-set basis would have required
consistent ‘trip’ identifiers between the datasets, which were not
available. Instead, for each species we compared the spatial dis-
tribution of catches by plotting maps of the catch rates for both
datasets. We then made boxplots of the catch rates recorded in
the two datasets for each species, in each of the nine areas and
overall, including only the positive sets (i.e. sets in which recorded
catch of the species was greater than zero) in order to evaluate the
main assumption of Baum et al.’s (2003) analysis, that fishers had
recorded positive shark catches approximately correctly.

2.3. Observer data models

For each shark species, we ‘standardized’ the catch rates
(Maunder and Punt, 2004) by modelling the number caught per
set using generalized linear mixed models (GLMM) with a negative
binomial error distribution and a log link. GLMM are extensions
of the GLMs commonly used to model fishery catch rates, which
allow for correlated response data (Diggle et al., 2002; Venables
and Dichmont, 2004; Bolker et al., 2009). Here, sets made on the
same trip (and those made by the same vessel) can be thought of
as repeated measures in a longitudinal analysis. In GLMs (which do
not account for the correlations among observations) of these data,
the standard errors of the trends in abundance were between 15%
and 50% smaller than their GLMM counterparts, implying a false
precision in the year estimates.

In the GLMMs, the expected mean catch ! is:

log (!) = Xˇ + Z" + log(h)

Table 2
Variables included in initial models from the observed sets in the U.S. pelagic long-
line fishery between 1992 and 2005. Mean values ± 1 SD.

Variable Description (mean ± 1 SD)/type

Temporal
Year 1992–2005/continuous, categorical

(separate models)
Season Year-round/continuous (sines,

cosines with periods of 1/2 and 1
year)

Time of fishing operation Early morning, day, evening,
night/categorical

Spatial/Environment
Area* Eight regions (see

Figs. 2 and 3)/categorical
Ocean depth** (m below sea level) −1924 ± 1441; range: −7996 to

−10/continuous, quadratic
Surface water temperature (◦C) 24.7 ± 4.1; range:

6.8–31.8/continuous

Operational
Average hook depth (m) 45.8 ± 19.8; range: 6.4–182.9;

continuous
Bait species Mackerel (25%), herring (5%), squid

(56%), artificial (1%), sardine (9%),
scad (2%), other (<1%)/categorical

Hook type J-hook (n = 77%), circle hook
(n = 23%)/categorical

Number of light sticks 305 ± 277; range: 0
(24%)–1488/continuous

Hooks per set 702 ± 259; range:
10–1548/continuous, offset

Target species Swordfish (43%), multiple spp.
(26%), tuna spp. (15%), yellowfin
tuna (14%), bigeye tuna
(2%)/categorical

* Interactions with area × season, and area × year were also included.
** Data obtained from the International Research Institute for Climate and

Society (http://ingrid.ldgo.columbia.edu/SOURCES/.WORLDBATH/.bath/) using the
recorded latitudes and longitudes.

where X is a matrix of covariates, ˇ is a vector of parameters (the
fixed effects described below), Z is a matrix of random effect covari-
ates, " is a vector of random effect parameters, and h is a vector
of the number of hooks that is known and treated as an offset.
We fitted GLMMs with an exchangeable correlation among trips
made by the same vessel (v), and a first-order autoregressive cor-
relation structure (AR1) with trip (t) as the clustering variable. We
refer to these models as GLMM-vt. To explore the sensitivity of
shark trend estimates to this particular model formulation, we fit-
ted two additional model types with the same error structure and
link: generalized estimating equations (GEE) and GLMM in which
we specified only the AR1 correlation structure for sets made on
the same trip (see Appendix A for model results). We refer to this
latter GLMM as GLMM-t.

For each model type, we began with a full model that included
a suite of temporal, spatial, and operational variables that could
affect shark catch rates (detailed in Table 2). To model the rate of
change in catch rates (interpreted as the trend in relative abun-
dance), we treated ‘year’ as a continuous variable. We also fitted
separate models treating ‘year’ as a categorical variable to obtain
individual year estimates. Although hook type was not always
recorded (n = 5151; 74% of sets), and including this variable in mod-
els involved a tradeoff between modelling only the data subset for
which it was recorded or missing potentially important sources
of variation (Maunder and Punt, 2004), we felt that its potential
impact on shark catch rates (e.g. Watson et al., 2005; Kaplan et al.,
2007) coupled with a mandated change in 2004 to use only circle
hooks, warranted investigation. We therefore fitted models for each
species on the subset of data with hook type recorded including it
as a model covariate, as well as on the full dataset without hook

http://ingrid.ldgo.columbia.edu/SOURCES/.WORLDBATH/.bath/
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type as a covariate. The latter are presented for those species for
which hook type was non-significant. For species for which it was
significant, we also fitted models on the ‘hook type’ data subset
without this variable to determine if the difference in year esti-
mates between the full and hook type subsetted data was due to
the inclusion of the hook type covariate or simply the difference in
number of observations between the two. In each case the differ-
ence was indeed due to the inclusion of hook type in the model.
Other potentially important operational variables had many miss-
ing values (e.g. leader material) and could not be included in the
models.

All analyses were conducted in SAS v.9.1 (SAS Institute, 2004).
GLMM-vt models were implemented using PROC GLIMMIX (SAS,
2005) by specifying the ‘random’ statement for vessel and the ‘ran-
dom residual ’ statement for trip. To fit these models, vessels with
only one observed trip and trips with only one observed set had to
be omitted. Starting parameter values also had to be provided for
the vessel and trip variances, and either the AR(1) or the negative
binomial parameter had to be held fixed.

For each species, we first fitted GLMM-vt using the 1992–2000
observer data in order to compare trend estimates between the
observer and logbook data. Then, using the 1992–2005 observer
data we fitted GLMM-vt (i) with year as a continuous variable, (ii)
with year as a categorical variable, and (iii) with a year × area inter-
action, and the GLMM-t and GEE with year as a continuous variable.
Since neither GLMM nor GEE are fitted using maximum likelihood,
the Akaike Information Criteria (AIC) cannot be used to compare
models. Instead, to select a final model for each of these model spec-
ifications we began with the full model containing all explanatory
variables and used backward-selection by statistical significance
testing of regression coefficients, with p-values at ! = 0.1.

3. Results

3.1. Shark catch rates in U.S. pelagic longline observer and
logbook data

Fishing effort sampled by the observer program was concen-
trated from just inshore of the 200 m isobath out to the 1000 m
isobath along the U.S. east coast, and beyond the 1000 m isobath in
the Gulf of Mexico (Fig. 1), The fleet itself covered a larger offshore
area of the Northwest Atlantic (see left column Figs. 2 and 3).

3.1.1. Oceanic sharks
Blue shark had the highest shark catch rates, and accounted for

61% of all sharks recorded by observers (Table 1). Catches were
concentrated off the Grand Banks (Area 7; Fig. 2b) where it was
recorded on over 99% of observed sets. Between 1992 and 2005,
observers recorded over 15,600 blue sharks in this area, with an
average of 39 per 1000 hooks. This species was also caught fre-
quently on the northeastern U.S. coast (Areas 5, 6; Fig. 2b) where it
averaged just under 10 per 1000 hooks. Catch rates recorded by
fishers were higher than those of observers in Area 7 (partially
reflecting their tendency to round up the catch to even numbers on
sets with many sharks), but otherwise similar between the datasets
(Figs. 2a,b and 4).

Of the other oceanic sharks, makos also were commonly caught
in the three northernmost areas (Fig. 2d), occurring on about half of
those observed sets, with mean catch rates between 1992 and 2005
of 1.5 per 1000 hooks in Areas 5 and 6, and 3 per 1000 hooks in Area
7. Thresher sharks were caught infrequently (7.8% of observed sets)
and in low numbers in all regions (overall mean catch rate = 0.24 per
1000 hooks between 1992 and 2005), except for rare, large offshore
catches (Fig. 2f). Oceanic whitetips were caught on just over 5% of
observed sets, with a mean catch rate of only 0.15 per 1000 hooks

Fig. 1. Map of the Northwest Atlantic Ocean showing the distribution of effort in the
U.S. pelagic longline fishery’s observer program between 1992 and 2005, categorized
by number of sets (0–100). The 200 m (dashed) and 1000 m (dotted) coastal isobaths
are shown for reference.

(Fig. 2h). Catch rates on non-zero sets were very similar in the two
datasets for makos, and only slightly higher in the logbooks for
thresher and oceanic whitetips (Fig. 4).

3.1.2. Coastal sharks
Although coastal sharks were seldom caught beyond the con-

tinental shelf, catch rates within the 200 m isobath often were
high. Hammerhead sharks, for example, were recorded on 35% of
observed sets (1992–2005) within or along the 200 m isobath of
the southeast U.S. coast (Areas 3–5) and Gulf of Mexico (Area 2)
(Fig. 3a,b), with a mean catch rate of 3 per 1000 hooks. Outside these
areas, however, they were seldom caught (overall mean = 0.41 per
1000 hooks). Similarly, tiger sharks were caught on almost a quar-
ter of observed sets along the southeastern U.S. coast (Areas 3, 4) at
rates of about 1–3 per 1000 hooks (Fig. 3d), but their overall mean
catch rate (0.31 per 1000 hooks) was much lower. Large coastal
sharks of the genus Carcharhinus were recorded on 12% of observed
sets, with a mean catch rate of 2.4 per 1000 hooks. This group’s
highest catch rates occurred in Areas 2–4, from the coast out to the
1000 m isobath (Fig. 3e,f), where observers recorded on average 7.9
per 1000 hooks. Recorded catch rates on positive sets for each of the
coastal shark species was similar in the two datasets, in each area
and overall, with only slightly higher rates recorded in the logbook
data (Fig. 4).

3.2. GLMM estimates of 1992–2005 shark trends

We focus herein on the model-estimated year effects, but note
that area, season, and ocean depth fished were significant for all of
the modeled sharks, confirming the importance of modelling these
data to account for these effects (Table A1). Examination of resid-
uals indicated that the models tended to overfit some of the zero
catches and underfit the rare, highest catches, but otherwise fit the
data relatively well.

3.2.1. Oceanic sharks
Blue shark standardized catch rates have decreased by an esti-

mated 53% (95% confidence interval (CI): 38–64%) between 1992
and 2005, based on an instantaneous decline rate of−0.057 (Fig. 5a).
The individual year estimates, however, show high interannual
variability, and while there appears to be a decline, the pattern is
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Fig. 2. Catch rates of oceanic sharks (blue (a,b), mako (c,d), thresher (e,f), oceanic whitetip (g,h)) in the Northwest Atlantic Ocean, as recorded in the U.S. pelagic longline
logbook (left column) and observer (right column) data. The mean catch per 1000 hooks between 1992 and 2000 is plotted in each hexagon, and the scale differs among
species to allow the greatest resolution of catch rates. Hexagons where no sharks of the plotted species were caught are displayed as empty. Areas (modified from the U.S.
National Marine Fisheries Service’s classification for longline fisheries): (1) Caribbean, (2) Gulf of Mexico, (3) Florida east coast, (4) South Atlantic Bight, (5) mid-Atlantic
Bight, (6) northeast coastal, (7) northeast distant, (8) Sargasso/north central Atlantic, (9) tuna north and south. The 200 m (dashed line) and 1000 m coastal isobaths (dotted
line) are shown for reference.
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Fig. 3. Catch rates of large coastal sharks (hammerhead (a,b), tiger (c,d), large coastal sharks of the genus Carcharhinus (e,f)) in the Northwest Atlantic Ocean as recorded in
the U.S. pelagic longline logbook (left column) and observer (right column) data. Plot details as in Fig. 1.

not well matched by the estimated trend (Fig. 5a). Examining the
trend across areas, a strongly negative trend (−0.135) in Area 7,
where blue shark was most frequently caught, was tempered by
more moderate declines in other areas (Fig. 6a).

Mako shark standardized catch rates also are estimated to have
declined, although the trend (instantaneous rate = −0.032) equat-
ing to a 34% decline (95%CI: 1–56%) between 1992 and 2005, was

only marginally significant and imprecisely estimated (Fig. 5b).
The estimated decline for shortfin mako, which accounted for
79% of all recorded mako sharks, was slightly greater (instanta-
neous rate = −0.040, 95% CI: −0.005 to −0.074, p = 0.026). Like blue
sharks, the estimated rate of decline in mako sharks was signifi-
cant and largest in Area 7 where they were most frequently caught
(Fig. 6b).
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Fig. 4. Boxplots of catch per 1000 hooks on non-zero sets for modelled shark species in each area (for which observers recorded the species on > 1% of sets) and in all areas
combined, according to the U.S. pelagic longline logbook (white bars, left) and observer (grey bars, right) data for 1992 to 2000.

Table A1
GLMMvt models for each species showing statistical significance of each covariate included in the final model (based on the Wald test): * = <0.1; ** = <0.01; *** = < 0.001;
**** = < 0.00001, otherwise non-significant. - indicates variables that were dropped from the final model.

Blue Mako Thresher Oceanic whitetip Hammerhead Tiger Coastal 1 Coastal 2

Year **** * * ** **** * **** ***
Ocean depth – **** **** **** **** – **** ****
Ocean depth2 ** **** **** * **** ****
Sine * * ** – **** – *** ****
Sine2 **** * * *
Cos ** – – – ** *
Cos2 – – – – ** * *
Soak time **** ** * *** ***
Temperature **** * * ** *** * *
No. light sticks * *
Hook depth *** ** * *
Area **** **** **** **** **** **** **** ****
Target species **** *** ** * **** ***
Period * *** * ** *
Hook type * * **** **
Bait type * * *
Area × Sine **** * **** * **** ****
Area × Sine2 **** *
Area × Cos * **** ** ****
Area × Cos2 * ** *** * *** *

The only nonsignificant trend was for thresher sharks, but
the small estimated rate of decline (−0.024) masks differences
in the trends among areas and over time (Figs. 5c and 6c).
The problem arises because the change in catch rates was
not monotonic over this time period, such that models under-
fit the earliest years, in order to better fit the data from
recent years (Fig. 5c). Trend estimates for thresher sharks also
varied significantly among areas: a decrease (−0.068) in the

Mid-Atlantic Bight (Area 5), where thresher sharks were most
commonly caught, contrasts with the increasing trend esti-
mated in offshore Area 8 where they were seldom caught
(Fig. 6c).

The estimated rate of change in oceanic whitetips was similar
to that of blue shark, equating to a 50% decline (95%CI: 17–70%)
between 1992 and 2005 (Fig. 5d). Differences in trends among areas
were nonsignificant (Fig. 6d).
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Fig. 5. Estimated change in relative abundance (standardized catch per 1000 hooks) between 1992 and 2005 based on the observer data for oceanic shark species: (A) blue,
(B) mako, (C) thresher, (D) oceanic whitetip, and large coastal shark species: (E) hammerhead, (F) tiger, (G) coastal shark group 1, (H) coastal shark group 2. Plotted for each
species are the overall trend (solid line) and the individual year estimates (!, ±95% CI) as estimated from generalized linear mixed models with vessel as a random effect
and trip as a residual effect (GLMM-vt).

3.2.2. Coastal sharks
Both hammerhead sharks and coastal group 1 (dusky, silky,

night shark) are estimated to have declined sharply, by 76%
between just 1992 and 2005, and the trends match their respective

individual year estimates well (Fig. 5e,g). Differences among areas
were nonsignificant for hammerheads (Fig. 6e), while for coastal
group 1 the estimated declines were significant in southerly areas
(1–3) and non-significant in northerly areas (4–6) (Fig. 6 g; a statis-

Fig. 6. Estimated instantaneous rate of change in abundance (i.e. the ‘year’ effect) in each area (", ±95% CI) and in all areas combined (!, ±95% CI) between 1992 and 2005
based on the observer data for oceanic shark species: (A) blue, (B) mako, (C) thresher, (D) oceanic whitetip, and coastal shark species: (E) hammerhead, (F) tiger, (G) coastal
shark group 1, (H) coastal shark group 2. Areas in which fewer than 50 individuals of the species (group) were caught in total are excluded.
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tically significant difference in trends between Areas 1 and 6 may be
an artifact of the small sample size for this group in these two areas).
Models for coastal group 2 showed a less steep trend, equating to
a 55% (95%CI: 32–71%) decrease (Fig. 5 h), but the same pattern
among areas (Fig. 6 h) as coastal group 1.

In contrast, tiger shark did not decline throughout this period.
Rather, the rate of change was non-constant as evidenced by indi-
vidual year estimates, which suggests this species either declined
slightly or was stable from 1992 to the late-1990s, and then began
increasing back to the 1992 level (Fig. 5f).

4. Discussion

4.1. Shark catch rates in U.S. pelagic longline observer and
logbook data

For wide-ranging species like large pelagic sharks, fishery-
dependent data are typically the only source of time series data that
samples intensively across a broad spatial scale similar to the range
of the populations. As such, they can provide important information
about the spatial distributions and hotspots of these species, which
is complementary to the large body of data currently being col-
lected from tagging programs for wide-ranging species (e.g. Weng
et al., 2008).

Shark catch rates were highly variable among species, and for
individual species among areas (Figs. 2–4). Given this variability, it
is not surprising that some single locations (i.e. hexagons) with high
catch rates differ between the two datasets. For each species group
examined, however, the summarized catch rates from the observer
and logbook datasets were similar overall and within each area;
where discrepancies existed the tendency was for higher shark
catch rates to be recorded in the logbook than the observer data
(reflecting the tendency for fishermen to round up their catches).
This suggests that overall the logbook data has provided a reason-
able record of shark catches in the fishery (at least up until 2000),
and can augment the more restricted observer dataset.

There are very few commercial fisheries datasets from years
prior to the pelagic longline logbook and observer programs with
which these recent catch rates can be compared. Apart from the
exploratory research surveys analyzed by Baum and Myers (2004),
the only data we know of is from Berkeley and Campos (1988). In
that study, swordfish-targeted pelagic longline sets (n = 111) mon-
itored on a single vessel off the east coast of Florida between 1981
and 1983 yielded an overall mean catch rate of 4.16 sharks per 100
hooks. Unfortunately, the original data from the study have been
lost (S. Berkeley, personal communication, March 2007), preclud-
ing formal statistical comparison with more recent data. As a rough
comparison, swordfish-targeted sets in the 1992–2005 observer
data from the same area (part of Area 3) had an overall mean of
only 1.03 sharks per 100 hooks, which is suggestive of a decline.

4.2. GLMM estimates of 1992–2005 shark trends

Models indicate substantial changes in standardized shark catch
rates between 1992 and 2005, which by extension suggests there
may have been corresponding changes in the relative abundance
of these populations. From a conservation standpoint, the most
important result is the precipitous decline estimated for ham-
merhead sharks (comprised primarily of scalloped hammerheads).
The estimated rate of decline (−0.109) was less than that esti-
mated in the logbook analysis (−0.158) for 1986–2000 (Baum et
al., 2003), but similar to that estimated in the analysis of the
1972–2003 shark-targeted UNC research survey data (−0.127;
Myers et al., 2007). Together, these three datasets provide consis-
tent indication of marked declines in hammerheads. Large declines

also were estimated for coastal shark group 1, but these must be
balanced against the smaller decline estimated for coastal group
2 (55% in 14 years). Although frustrating that trends generally
cannot be estimated from fishery-dependent data for individual
Carcharhinus species, assessments that do so (e.g. Cortés et al.,
2006), ignoring the propensity for fishermen and observers alike to
misidentify these species, may produce biased results. Thus, there
is at present a trade-off for this group between obtaining a sin-
gle trend estimate for the genus across a broad geographic area
(from fishery-dependent data) or obtaining species-specific trends
for small single locations (from research surveys).

Although model estimates suggest significant declines in blue,
mako, and oceanic whitetip sharks between 1992 and 2005, the
high degree of interannual variability in the individual year esti-
mates (especially for mako sharks; Fig. 5a,b,d) suggests that the
catch rates have not been fully standardized (i.e. covariates that sig-
nificantly influence catch rates of these species were not included
in the models) and limits what can reasonably be inferred about
the relative abundance of these species. Clearly, greater sampling
effort and more complete recording of variables describing the fish-
ing operation are required in the observer program to reduce this
variability.

Interpretation of model estimates is complicated for thresher
and tiger sharks because the changes between 1992 and 2005 do
not appear to be monotonic for these species, as judged by their
individual year estimates (Fig. 5c,f), and by the difference in esti-
mated trends between the 1992–2000 and 1992–2005 observer
data (Appendix A). Whereas models of the 1992–2005 observer
data did not detect a trend for thresher sharks, models of the
1992–2000 observer and 1986–2000 logbook data showed almost
exactly the same significant rate of decline (Appendix A), which
equates to an 80% decrease from 1986 to 2000. Individual year
estimates for thresher sharks suggest that this group has now sta-
bilized (Fig. 5c). For tiger shark, the rate of increase estimated for
1992–2005 appears anomalously high when compared to its indi-
vidual year estimates, which had high interannual variability but
suggested that the population is at the same level now as it was
in 1992. Even still, it seems that the tiger shark population has
fared the best of all examined shark species over this fourteen-
year period, which may be attributable to it being one of the most
productive shark species (Cortes, 2002), having the highest sur-
vival rate among these sharks from being caught on the longlines
(Beerkircher et al., 2002), and to recent management changes in
the fishery (NMFS, 2006). Still, setting these changes in the con-
text of tiger shark population declines that are estimated to have
occurred in earlier decades (Musick et al., 1993; Ha, 2006; Myers et
al., 2007) implies that these populations are stabilizing at greatly
reduced levels of abundance.

4.3. Future research and recommendations

In future, alternative functional forms for ‘year’, or different
model types may yield improved estimates of changes in relative
abundance for sharks from these observer data. One possibility is
to apply piecewise regression, in which separate trends are fitted
to the data, one before and one after a breakpoint mid-way through
the time series. We found, however, that at present there were too
few years in the data after 2000 for these models to converge. A
second possibility is to include a quadratic term for ‘year’ in the
models. Such models were highly significant for mako, thresher,
and tiger sharks, indicating that their trends do not follow a sim-
ple exponential model, and suggesting that there were significant
increases in tiger sharks and significant declines in thresher sharks
between 1992 and 2005.

Apart from the large number of variables to be included in mod-
els of observer data, two aspects of the data, its correlated structure
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and the high proportion of zeroes in the shark catches, present chal-
lenges for statistical modeling. In these analyses we focused on the
first problem and modelled two levels of correlations (among sets
on the same trip and among trips on the same vessel). In addi-
tion to these sources of variation, however, the high proportion
of unidentified sharks and known reporting problem with night
sharks suggests that observers’ reporting tendencies may also cause
correlations within sets reported by the same observer. It may
therefore be worthwhile to investigate models with ‘observer’ as a
random effect. Secondly, with the obvious exception of blue shark
in Area 7, the catch data contain many zeroes. To better address the
high proportion of zeroes, it may useful to implement models using
the zero-inflated negative binomial (ZINB) distribution, which is a
mixture of two distributions, one for the zeros and one that includes
zeros and positive values (i.e. the negative binomial distribution).
The ZINB has been applied recently to models of silky shark bycatch
in an eastern Pacific Ocean purse-seine fishery (Minami et al., 2007).
Models that can account for both the excessive zeros and correla-
tions in the data (e.g. generalized linear mixed models with a ZINB
distribution) would be a step forward.

Although observer data are generally considered to be an
improvement over logbook data, in this case the high proportion of
sharks identified only at the genus level, misidentified, or uniden-
tified unfortunately precluded species-specific analyses for most
sharks. The high variability in fishing areas, season, and gear in this
fleet also leads to a large number of factors that can affect catch
rates, underscoring the need for observers to provide complete and
accurate records of the fishing operation, whereas at present some
variables in the observer dataset have many missing values and
cannot be modeled. Thus, in addition to increasing the percentage
of the fleet monitored by observers, both improved species identi-
fication and data recording will improve the utility of observer data
for monitoring sharks and other large pelagic fishes.
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Appendix A. Shark trends: comparison of logbook and
observer models

Models of the observer data up to the year 2000 did not detect
a trend in blue sharks, but the rate of decline for 1992–2005 was
only slightly less than that estimated in the analysis of logbook
data for 1986 to 2000 (−0.066; Table A2). Mako shark decline rates
estimated from the observer data for 1992 to 2005 and the log-
book data for 1986 to 2000 were very similar, while that estimated
from the 1992–2000 observer data indicated a much greater decline
(−0.079; Table A2). According to both the observer (1992–2000)
and logbook (1986–2000) data, estimates from which were virtu-
ally identical (−0.118 vs. −0.120), thresher sharks declined sharply
up to the year 2000 (Table A2). In contrast, models of the observer
data between 1992 and 2000 failed to detect a significant trend
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for oceanic whitetip shark, which might be a result of its low sam-
ple size (n = 358), while the trend estimated from the logbook data
for the same years based on over 8500 recorded individuals was
significant and large (−0.145; Table A2)

For hammerhead sharks, the observer data model for
1992–2000 indicates a much larger decline rate (p < 0.0001) than
the logbook data (Table A2), which is driven by the sharp decline
in hammerhead catch rates in the early 1990s. The 1992–2000
observer data model failed to detect a trend for tiger sharks
(Table A2). A significant decline in tiger shark abundance between
1986 and 2000 was estimated in the logbook analysis (Table A1):
individual year estimates from these data suggest that tiger shark
abundance declined from 1986 to 1992 and thereafter, as in the
observer data, were stable (Baum et al., 2003). For the coastal
shark groups, although the 1992–2000 observer data model sug-
gested a smaller non-significant decline than in the logbook data,
the 1992–2005 trends were very similar to that estimated in the
1992–2000 logbook data analysis suggesting that the latter esti-
mates were not unrealistically large (Table A2).

Appendix B. Shark Trends: Comparison of GLMM-vt,
GLMM-t, and GEE models

Estimated rates of change from the 1992–2005 observer data
were very similar amongst the three model types for each of the
modelled species (Table A2), suggesting that the simpler GEE mod-
els, although not common in the fisheries literature, may be as
appropriate for these types of data as the more complex mixed
models.
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